scholarly journals Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries

Author(s):  
E. Thauer ◽  
G. S. Zakharova ◽  
E. I. Andreikov ◽  
V. Adam ◽  
S. A. Wegener ◽  
...  

AbstractFor the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g−1 at a current rate of 100 mA g−1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g−1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven.

Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2389
Author(s):  
Faizan Ghani ◽  
In Wook Nah ◽  
Hyung-Seok Kim ◽  
JongChoo Lim ◽  
Afifa Marium ◽  
...  

Low-cost, vanadium-based mixed metal oxides mostly have a layered crystal structure with excellent kinetics for lithium-ion batteries, providing high energy density. The existence of multiple oxidation states and the coordination chemistry of vanadium require cost-effective, robust techniques to synthesize the scaling up of their morphology and surface properties. Hydrothermal synthesis is one of the most suitable techniques to achieve pure phase and multiple morphologies under various conditions of temperature and pressure. We attained a simple one-step hydrothermal approach to synthesize the reduced graphene oxide coated Nickel Vanadate (rGO@Ni3V2O8) composite with interconnected hollow microspheres. The self-assembly route produced microspheres, which were interconnected under hydrothermal treatment. Cyclic performance determined the initial discharge/charge capacities of 1209.76/839.85 mAh g−1 at the current density of 200 mA g−1 with a columbic efficiency of 69.42%, which improved to 99.64% after 100 cycles. High electrochemical performance was observed due to high surface area, the porous nature of the interconnected hollow microspheres, and rGO induction. These properties increased the contact area between electrode and electrolyte, the active surface of the electrodes, and enhanced electrolyte penetration, which improved Li-ion diffusivity and electronic conductivity.


2017 ◽  
Vol 46 (48) ◽  
pp. 17061-17066 ◽  
Author(s):  
Ruixue Sun ◽  
Guangyin Liu ◽  
Shuzhi Cao ◽  
Bitao Dong ◽  
Xiaodi Liu ◽  
...  

We report the synthesis and application of ordered mesoporous TiNb6O17 microspheres (M-TNO) using a one-step solvothermal method for the first time in lithium-ion batteries.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750025 ◽  
Author(s):  
Kaiqi Xu ◽  
Zhizhen Zhang ◽  
Wei Su ◽  
Xuejie Huang

Core–shell Si/Cu nanocomposites were synthesized via a flexible self-limiting surface reaction without extra reductant for the first time. The nano Si was uniformly coated with Cu nanoparticles with a diameter of 5–10[Formula: see text]nm, which can enhance the electronic conductivity of the nanocomposites and buffer the huge volume change during charge/discharge owing to its high ductility. Benefited from the unique structure, the Si/Cu nanocomposites exhibited a good electrochemical performance as anodes for lithium ion batteries, which exhibited a capacity retention of 656[Formula: see text]mAh/g after 50 cycles and a coulombic efficiency of more than 99%.


2019 ◽  
Vol 55 (20) ◽  
pp. 2996-2999 ◽  
Author(s):  
Fanjun Kong ◽  
Jian Wang ◽  
Zhengsi Han ◽  
Bin Qian ◽  
Shi Tao ◽  
...  

CdSe nanoparticles with carbon modification have been synthesized using a simple hydrothermal method for the first time. The lithium storage mechanisms of CdSe are a combination of conversion and alloying reactions and proved using ex situ tests.


2015 ◽  
Vol 3 (29) ◽  
pp. 15156-15162 ◽  
Author(s):  
Lei Zhu ◽  
Yang Liu ◽  
Wenyi Wu ◽  
Xiongwei Wu ◽  
Weiping Tang ◽  
...  

A surface-fluorinated NCA is prepared for the first time by a one-step facile and dry method, and it exhibits higher capacity, better rate capability and excellent cycling stability.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Yu Liu ◽  
Yefeng Yang

TiO2-based materials have been widely studied in the field of photocatalysis, sensors, and solar cells. Besides that, TiO2-based materials are of great interest for energy storage and conversion devices, in particular rechargeable lithium ion batteries (LIBs). TiO2has significant advantage due to its low volume change (<4%) during Li ion insertion/desertions process, short paths for fast lithium ion diffusion, and large exposed surface offering more lithium insertion channels. However, the relatively low theoretical capacity and electrical conductivity of TiO2greatly hampered its practical application. Various strategies have been developed to solve these problems, such as designing different nanostructured TiO2to improve electronic conductivity, coating or combining TiO2with carbonaceous materials, incorporating metal oxides to enhance its capacity, and doping with cationic or anionic dopants to form more open channels and active sites for Li ion transport. This review is devoted to the recent progress in enhancing the LIBs performance of TiO2with various synthetic strategies and architectures control. Based on the lithium storage mechanism, we will also bring forward the existing challenges for future exploitation and development of TiO2-based anodes in energy storage, which would guide the development for rationally and efficiently designing more efficient TiO2-based LIBs anodes.


2019 ◽  
Vol 15 (4) ◽  
pp. 420-429 ◽  
Author(s):  
Sumair Ahmed Soomro ◽  
Iftikhar Hussain Gul ◽  
Hashim Naseer ◽  
Shafiqullah Marwat ◽  
Muhammad Mujahid

Background: CuFe2O4 nanoparticles possess good electrochemical properties apart from their inadequate electronic conductivity and large volume variation. The resulting performance lag can be modified by the addition of conductive materials to form a composite. Hence, the properties of CuFe2O4/rGO nanohybrid are presented for application as anode material for lithium-ion batteries. </P><P> Methods: The composites are synthesized through a facile one-step method of thermochemical reaction. The samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Dielectric behavior and Galvanostatic charge-discharge test. </P><P> Result & Conclusion: The XRD analysis confirmed the reduction of GO and formation of CuFe<sub>2</sub>O<sub>4</sub>/rGO composite, whereas FTIR results showed two major vibrational bands that correspond to spinel structure formation and attachment of rGO to CuFe<sub>2</sub>O<sub>4</sub>. The SEM images confirmed tethering of CuFe<sub>2</sub>O<sub>4</sub> nanoparticles with rGO sheets. It was also observed that the formation of the nanohybrid of CuFe<sub>2</sub>O<sub>4</sub> with rGO resulted in expected enhancement of the dielectric properties; dielectric constant and AC conductivity. At 100 Hz frequency, the dielectric constant of the composite with 15 wt. % of GO was 1.27×10<sup>5</sup>, which is higher than that of pure CuFe<sub>2</sub>O<sub>4</sub> (3.57&#215;10<sup>4</sup>). The parameters such as charge storage capacity and rate capability, which are reminiscent of battery performance were also enhanced with the increase of rGO content in the composite. Hence, a substantial enhancement of battery performance was depicted that projects the composite as a promising candidate for applications in electrode material for lithium-ion batteries.


2014 ◽  
Vol 43 (40) ◽  
pp. 15013-15021 ◽  
Author(s):  
Franziska Mueller ◽  
Dominic Bresser ◽  
Nathalie Minderjahn ◽  
Julian Kalhoff ◽  
Sebastian Menne ◽  
...  

Co2SiO4 is investigated for the first time as lithium-ion active material and a lithium storage mechanism is proposed including the reversible formation of Li4SiO4.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050014
Author(s):  
Yang Li ◽  
Feng Duan ◽  
Songli Liu ◽  
Cheng Peng

Hierarchical flower-like Ni3V2O8/Co3V2O8 composites were prepared by a simple one-step hydrothermal process. When employed as an anode for lithium-ion batteries (LIBs), the fabricated Ni3V2O8/Co3V2O8 composites exhibited significantly improved lithium storage performances with superior discharge capacity (1142.7[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 100[Formula: see text]mA[Formula: see text]g[Formula: see text]), excellent cycling stability (933.2[Formula: see text]mAh[Formula: see text]g[Formula: see text] after 600 cycles at current density of 500[Formula: see text]mA[Formula: see text]g[Formula: see text]) and remarkable rate capability (607.6[Formula: see text]mAh[Formula: see text]g[Formula: see text] even at rate of 5000[Formula: see text]mA g[Formula: see text]). The superior electrochemical properties could be attributed to the hierarchical flower-like structure and impressive synergistic interplay between Ni3V2O8 and Co3V2O8, which resulted in improved electronic conductivity and stable mass transfer. This interesting hybridization strategy might open a new avenue to prepare micro/nanostructured composites for high-performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document