scholarly journals An Ecofriendly Initiative for the Corrosion Inhibition of Mild Steel in 1 M HCl Using Tecoma capensis Flower Extract

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
A. Prithiba ◽  
R. Rajalakshmi

Corrosion inhibition of mild steel in 1 M HCl in the presence of Tecoma capensis flower extract was carried out by means of mass loss, potentiodynamic polarisation, and electrochemical impedance techniques. The inhibition efficiency varied with concentration of the inhibitor, immersion time, and temperature. The adsorption of the inhibitor on mild steel surface obeys Langmuir’s adsorption isotherm. Thermodynamic parameters reveal that the adsorption process is spontaneous. Electrochemical studies reflect that the inhibitor acts as a mixed-type inhibitor. Surface analytical techniques ascertain the inhibitive nature of the studied inhibitor.

2017 ◽  
Vol 33 (1-2) ◽  
pp. 63
Author(s):  
Suchitra Chaudhary ◽  
Rakesh K. Tak ◽  
Rajendra Kumar Duchaniya

The corrosion inhibition efficiency of alcoholic extract of fruits of plant <em>Tribulus terrestris</em> for mild steel in 0.5N H<sub>2</sub>SO<sub>4</sub> solution has been studied in relation to concentration of inhibitor by Mass Loss, Potentiodynamic Polarisation and Electrochemical Impedance Spectroscopy methods. The results indicate that <em>Tribulus terrestris</em> fruit extract used in liquid H<sub>2</sub>SO<sub>4</sub> effectively reduces the corrosion rate of mild steel and act as a good corrosion inhibitor. It is also observed that inhibition efficiency increases with inhibitor concentration but it decreases with increase in temperature. The thermodynamic parameters reveal that the inhibition of corrosion is due to adsorption of the inhibitor on the metal surface. The negative free energy values show spontaneity of the adsorption process in accordance with Langmuir adsorption isotherm.


2011 ◽  
Vol 239-242 ◽  
pp. 1409-1413
Author(s):  
Hong Mei Wang ◽  
Ke Long Huang ◽  
Zhi Ping Zhu

The inhibiting behavior of 1-ethyl-3-butylbenzotriazolium ionic liquids,[C2Bt][Br] ,on mild steel corrosion in 5 wt.% HCl as corroding solution was investigated using weight loss,potentiodynamic polarization and electrochemical impedance measurements. The obtained results indicated that [C2Bt][Br] is a good inhibitor for the mild steel in 5 wt.% HCl solution. The inhibition efficiency increased with an increase of inhibitive concentration. Potentiodynamic polarization data indicated that the [C2Bt][Br] acted essentially as a mixed-type inhibitor. The electrochemical impedance study showed that corrosion inhibition took place by adsorption.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kashmitha Muthamma ◽  
Preethi Kumari ◽  
M. Lavanya ◽  
Suma A. Rao

Abstract Mild steel (a low carbon steel) is an affordable engineering material used for many purposes in various environments including mild acidic environment with some precautions. The corrosion behaviour of mild steel (MS) in 0.5 M H2SO4 and 0.5 M HCl, in the temperature range (303–323 K) without and with the inhibitor N-[(3,4-dimethoxyphenyl) methyleneamino]-4-hydroxy-benzamide (DMHB), was investigated using Potentiodynamic polarization and Electrochemical impedance spectroscopy (EIS) techniques supplementing with surface characterization study using scanning electron microscope (SEM) and atomic force spectroscopy (AFM). Experimental observations were found to be in agreement with Density functional theory (DFT) calculations. The inhibition efficiency increases with increase in DMHB concentration and showed maximum inhibition efficiency of 86% in 0.5 M H2SO4 and 81% in 0.5 M HCl, respectively, at concentration of 3 × 10─3 M at 303 K. The inhibition efficiency of DMHB obtained relatively at its lower concentration (3 × 10─3 M) compared to other reported related compounds confirms its potential towards corrosion inhibition. The variation in the kinetic and thermodynamic parameters indicated physisorption of DMHB on MS and its mixed type inhibitive action followed Langmuir’s isotherm model. DFT calculations go along with the experimental results, signifying the potential corrosion inhibition behaviour of DMHB for MS in both the acid media.


2011 ◽  
Vol 8 (2) ◽  
pp. 671-679 ◽  
Author(s):  
D. Nalini ◽  
R. Rajalakshmi ◽  
S. Subhashini

A heterocyclic imidazoline, 3,4,5-trimethoxyphenyl-2-imidazolines (TMP2I) was tested for its corrosion inhibition in 0.5 M H2SO4and 1 M HCl using weight loss, Tafel polarisation and electrochemical impedance techniques. The results show that the inhibition efficiency increases with the increase in concentration of TMP2I and the higher efficiency of about 98% is obtained in both the acid media at 20 ppm. The adsorption of TMP2I obeys Langmuir adsorption isotherm and occurs spontaneously. Cathodic and anodic polarization curves of mild steel in the presence of different concentrations of TMP2I at 300C reveal that it is a mixed type of inhibitor. Electrochemical impedance studies reveal that the system follows mixed mode of inhibition. The surface morphology of the mild steel specimens was evaluated using SEM images


2019 ◽  
Vol 66 (5) ◽  
pp. 583-594
Author(s):  
Esma Sezer ◽  
İpek Öztürk

Purpose Tannic acid (TA) is one of the green corrosion inhibitors for mild steel; its anti-corrosive performance in alkaline water on mild steel when it is used together with polyaspartic acid (PASA) still has not been investigated. The purpose of this study is to develop an effective, biodegradable and environment-friendly novel corrosion inhibitor based on TA and PASA as an alternative to the conventional inorganic inhibitors for mild steel in decarbonised water, which is common in cooling systems. Design/methodology/approach Corrosion inhibition mechanism is investigated by electrochemical techniques such as polarisation measurements and electrochemical impedance spectroscopy, and results were evaluated to determine the optimum inhibitor concentration for industrial applications. Additionally, practice-like conditions are carried out in pilot plant studies to simulate the conditions in cooling systems. Thus, the efficiencies of the inhibitors are evaluated through both weight loss and linear polarisation resistance measurements. Moreover, the corrosion product is characterised by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR) analysis. Findings TA shows high inhibition efficiency especially towards pitting corrosion for mild steel in decarbonised water. PASA addition in the cooling systems improves the inhibition efficiency of TA, and at lower concentrations of TA + PASA, it is possible to obtained better inhibition efficiency than TA alone at higher inhibitor amounts, which is essential in economic and environmental aspect. Originality/value A blended inhibitor program including TA and PASA with suggested concentrations in this work can be used as an environmental friendly treatment concept for the mild steel corrosion inhibition at cooling systems.


2009 ◽  
Vol 6 (3) ◽  
pp. 785-795 ◽  
Author(s):  
R. Saratha ◽  
S. V. Priya ◽  
P. Thilagavathy

The inhibition efficiency of acid extract of leaves ofCitrus aurantiifolia[CAL] plant on the corrosion of mild steel in 1 M HCl was investigated by weight loss measurements and electrochemical studies. The corrosion rate of mild steel and the inhibition efficiencies of the extract were calculated. The results obtained show that the extract could serve as an effective inhibitor for the corrosion of mild steel in HCl media. Inhibition was found to increase with increasing concentration of the plant extract. The inhibitive action of plant extract is discussed on the basis of adsorption of stable complex at the mild steel surface. Theoretical fitting of different isotherms, Langmuir, Temkin, Freundlich, Frumkin, Flory-Huggins and the kinetic thermodynamic model, were tested to clarify the nature of adsorption. Polarisation curves revealed that this inhibitor act as a mixed type inhibitor and the inhibition efficiency of up to 97.91% can be obtained. The surface analysis study confirms the corrosion of mild steel and its inhibition by the inhibitor CAL.


Author(s):  
Omotola M. Fayomi ◽  
Habibat F. Chahul ◽  
David C. Ike ◽  
Gloria I. Ndukwe ◽  
Ikpum M. Phoebe

The study reports the corrosion inhibition activity of methanol extract of Aframomum chrysanthum on mild steel in 0.1 M HCl, using gravimetry analysis. The weight loss of the mild steels was observed to increase with increasing immersion time. The inhibition efficiency (%IE) was also observed to have increased with increasing concentrations of the inhibitor but decreases with increasing immersion time. The effect of temperature change on the inhibition efficiency was also studied and it was observed that for every increase in temperature there was a corresponding increase in weight loss and decreased in the %IE. The highest values of %IE; 46.66, 56.66, 60.0, 80.0 & 93.33 was observed at temperature 303 K for 0.2, 0.4, 0.6, 0.8 & 1.0 g/L respectively. Activation energy (Ea) values and the enthalpy values reviews that the adsorption process followed a physisorption’s mechanism. Change in enthalpy (ΔH) and entropy change (ΔS) of the reaction was positive indicating the endothermic nature and the spontaneity of the reaction. Three adsorption isotherms were tried on the inhibition process and only the Temkin isotherm gave the best fit with R2 value of 0.903, describing the best adsorption mechanism. The adsorption equilibrium constants K­ads were positive, indicating the feasibility of the adsorption of the inhibitor to the metal surface. Gibb’s Free Energy change of adsorption, ΔGads are negative indicating that the adsorption of the extract of Aframomum chrysanthum on mild steel surface is spontaneous. The values of ΔGads shows physisorption mechanism. All confirming that Aframomumm chrysanthum extract is a good corrosion inhibitor on mild steel in 0.1 M HCl.


RSC Advances ◽  
2017 ◽  
Vol 7 (58) ◽  
pp. 36688-36696 ◽  
Author(s):  
Sami Ben Aoun

The corrosion inhibition efficiency of 1-hexylpyridinium bromide for carbon steel in molar hydrochloric acid has been investigated by gravimetric, linear polarization, electrochemical impedance spectroscopy and scanning electron microscopy techniques.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 357 ◽  
Author(s):  
Hassane Lgaz ◽  
Sheerin Masroor ◽  
Maryam Chafiq ◽  
Mohamed Damej ◽  
Ameni Brahmia ◽  
...  

This research aimed to develop a better understanding of the corrosion inhibition of the mild steel in acidic medium by new organic molecules. For this purpose, two new compounds namely, 2,3-dihydrobenzo[4,5]imidazo[2,1-b]thiazole (2-BIT) and 3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b]thiazole (3-BIT) were synthesized and evaluated for mild steel (MS) corrosion in HCl. Analyses were carried out using weight loss measurements, electrochemical techniques, and scanning electron microscope (SEM). The adsorption of inhibitors onto the steel surface follows the Langmuir adsorption model. Generally, results showed that the corrosion inhibition efficiency of the investigated molecules was found to increase with increased concentration of inhibitors. Electrochemical tests, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) techniques, showed that the addition of our investigated inhibitors decreases the dissolution of the metal and generally act as mixed-type inhibitors. In addition, the influence of temperature (from 303 to 333 K) on the corrosion inhibition was studied, and the results demonstrated that with an increase in temperature, the inhibition efficiency decrease. SEM results confirmed that the inhibition process is due to a protective film that prevents corrosion. Similarly, the results showed that the inhibitory efficiencies reach 93% at 5 × 10−3 M in the case of inhibitor 3-BIT. These results revealed that this compound could effectively control and reduce the corrosion rate of mild steel in the corrosion test solution.


Sign in / Sign up

Export Citation Format

Share Document