scholarly journals The Effect of Traditional Chinese Formula Danchaiheji on the Differentiation of Regulatory Dendritic Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yingxi Li ◽  
Dan Chen ◽  
Xiaodong Wang ◽  
Jingzhi Tong ◽  
Keqiu Li ◽  
...  

Recently, regulatory dendritic cells (DCregs), a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ) is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increasedIDOexpression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity.

2021 ◽  
Author(s):  
Müge Özkan ◽  
Yusuf Cem Eskiocak ◽  
Gerhard Wingender

Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7 + activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 601-604 ◽  
Author(s):  
Shalin Naik ◽  
David Vremec ◽  
Li Wu ◽  
Meredith O'Keeffe ◽  
Ken Shortman

AbstractAlthough previous studies had indicated that the CD8α- and CD8α+ subtypes of murine dendritic cells (DCs) differ in immediate origin, a recent study found that intravenous transfer of CD8α- DCs led to CD8α+ DCs in the spleen several days later, suggesting a direct precursor-product relationship. We have repeated these experiments with a balance sheet approach. We find that though a few CD8α+ DCs can be generated in such experiments, this is a rare event and could be the result of a contaminant precursor. Most of the immediate precursors of CD8α+ DCs are cells that lack the phenotype of a recognizable DC. CD8α- DCs and CD8α+ DCs are not precursor-product related, though these sublineages may be connected further upstream.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yoshinori Sato ◽  
Shigeru Tansho-Nagakawa ◽  
Tsuneyuki Ubagai ◽  
Yasuo Ono

Acinetobacter baumannii is an important opportunistic pathogen that primarily afflicts elderly people. To clarify the pathogenicity of A. baumannii in the elderly, we investigated immune responses to A. baumannii ATCC 19606 infection in klotho knockout (KO) mice, the mouse model of aging. Following intravenous inoculation, the mice seldom displayed severe symptoms. However, the survival rate was 56% at 7 days post-infection. Bacteria were detected in the lungs of klotho KO mice but not klotho wildtype (WT) mice at 7 days post-infection. Neutrophils, eosinophils, interstitial macrophages, and monocyte/dendritic cell subset in the lungs of klotho KO mice were transiently induced after infection with A. baumannii. The number of alveolar macrophages in klotho KO mice was lower than that in klotho WT mice, except for 1 day post-infection. CD11b expression on neutrophils and alveolar macrophages in the lungs of klotho KO mice was seldom upregulated by the infection. These results suggested that immune functions eliminating bacteria in the lungs of klotho KO mice were insufficient. CD11blow conventional DC cells hardly increased in klotho KO mice infected with A. baumannii. Additionally, the production of interleukin (IL)-10 in the sera of klotho KO mice was significantly higher than that in klotho WT mice, whereas that production of interferon-gamma was not detected in the sera of klotho KO mice. These results suggested that acquired immune responses were hardly induced in klotho KO mice. IL-1β, CXCL1, CXCL2, and CCL2 expression was significantly higher in the lungs of klotho KO mice infected with A. baumannii than in those of klotho WT mice at 1 day post-infection. These results suggested that pulmonary inflammation was elicited in klotho KO mice during early infection. The expression levels of proinflammatory cytokines significantly correlated with TLR9 expression in the lungs of klotho KO mice. The collective results demonstrate an A. baumannii infection state in aged hosts and suggest that pulmonary inflammation and bacterial burden should be noted in aged hosts even in the absence of severe symptoms of A. baumannii infection.


2020 ◽  
Vol 205 (1) ◽  
pp. 121-132
Author(s):  
Cindy Audiger ◽  
Adrien Fois ◽  
Alyssa L. Thomas ◽  
Edith Janssen ◽  
Martin Pelletier ◽  
...  

2007 ◽  
Vol 81 (9) ◽  
pp. 4877-4880 ◽  
Author(s):  
Shneh Sethi ◽  
Kristen M. Kerksiek ◽  
Thomas Brocker ◽  
Hans Kretzschmar

ABSTRACT Controversial results have been observed in mouse models regarding the role of lymphoid tissues in prion pathogenesis. To investigate the role of dendritic cells (DC), we used a transgenic mouse model. In this model (CD11c-N17Rac1), a significant reduction of CD8+ CD11chi DC has been described, and the remaining CD8+ DC demonstrate a reduced capacity for the uptake of apoptotic cells. After intraperitoneal prion infection, significantly longer incubation times were observed in CD11c-N17Rac1 mice than in controls, indicating that a defect in CD8+ CD11chi DC significantly impedes neuroinvasion after intraperitoneal infection. In contrast, no distinct differences were observed between CD11c-N17Rac1 mice and controls after oral infection. This provides evidence that oral and intraperitoneal prion infections differ in lymphoreticular requirements.


2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background: Plasmodium falciparum causes the majority of malaria cases world-wide, mostly affecting children in sub-Saharan Africa. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, here we sought to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods: In this cross-sectional study we assessed the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8). Additionally, we measured plasma cytokine and chemokine levels in these adults and in Malian children (n=19) with acute symptomatic malaria.Results: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions: Our findings indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to our understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background: Plasmodium falciparum causes the majority of malaria cases world-wide, mostly affecting children in sub-Saharan Africa. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, here we sought to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods: In this cross-sectional study we assessed the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8). Additionally, we measured plasma cytokine and chemokine levels in these adults and in Malian children (n=19) with acute symptomatic malaria.Results: With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions: Our findings indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines in a manner that is comparable to mDCs of malaria-naïve individuals. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to our understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2020 ◽  
Author(s):  
Triniti C. Turner ◽  
Charles Arama ◽  
Aissata Ongoiba ◽  
Safiatou Doumbo ◽  
Didier Doumtabé ◽  
...  

Abstract Background Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function.Methods In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n=27) or asymptomatically infected with P. falciparum (n=8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n=19) with acute symptomatic malaria.Results With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria.Conclusions The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.


2019 ◽  
Vol 216 (5) ◽  
pp. 1003-1004
Author(s):  
Stephanie Houston

Stephanie Eisenbarth is an Associate Professor in the Immunology Faculty at Yale University. Her work has shown that the guanine nucleotide exchange factor Dock8 plays a role in the migration of a specific dendritic cell subset, and that when Dock8 is missing, some dendritic cells can no longer prime CD4+ T cells. Stephanie’s laboratory now focuses on understanding how T cell–driven pathology is initiated. We chatted with Stephanie to find out about her journey in science.


2004 ◽  
Vol 72 (8) ◽  
pp. 4480-4485 ◽  
Author(s):  
Mario Galgani ◽  
Immacolata Busiello ◽  
Stefano Censini ◽  
Serafino Zappacosta ◽  
Luigi Racioppi ◽  
...  

ABSTRACT Monocytes are circulating precursors of the dendritic cell subset, professional antigen-presenting cells with a unique ability to initiate the innate and adaptive immune response. In this study, we have investigated the effects of wild-type Helicobacter pylori strains and their isogenic mutants with mutations in known bacterial virulence factors on monocytes and monocyte-derived dendritic cells. We show that H. pylori strains induce apoptosis of human monocytes by a mechanism that is dependent on the expression of a functional cag pathogenicity island. This effect requires an intact injection organelle for direct contact between monocytes and the bacteria but also requires a still-unidentified effector that is different from VacA or CagA. The exposure of in vitro-generated monocyte-derived dendritic cells to H. pylori stimulates the release of inflammatory cytokines by a similar mechanism. Of note is that dendritic cells are resistant to H. pylori-induced apoptosis. These phenomena may play a critical role in the evasion of the immune response by H. pylori, contributing to the persistence of the infection.


Sign in / Sign up

Export Citation Format

Share Document