scholarly journals HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ji-Yon Kim ◽  
So-Youn Woo ◽  
Young Bin Hong ◽  
Heesun Choi ◽  
Jisoo Kim ◽  
...  

The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Laís Vicari de Figueiredo Pessôa ◽  
Pedro Ratto Lisboa Pires ◽  
Maite del Collado ◽  
Naira Caroline Godoy Pieri ◽  
Kaiana Recchia ◽  
...  

Introduction. Pluripotent stem cells are believed to have greater clinical potential than mesenchymal stem cells due to their ability to differentiate into almost any cell type of an organism, and since 2006, the generation of patient-specific induced pluripotent stem cells (iPSCs) has become possible in multiple species. Objectives. We hypothesize that different cell types respond differently to the reprogramming process; thus, the goals of this study were to isolate and characterize equine adult and fetal cells and induce these cells to pluripotency for future regenerative and translational purposes. Methods. Adult equine fibroblasts (eFibros) and mesenchymal cells derived from the bone marrow (eBMmsc), adipose tissue (eADmsc), and umbilical cord tissue (eUCmsc) were isolated, their multipotency was characterized, and the cells were induced in vitro into pluripotency (eiPSCs). eiPSCs were generated through a lentiviral system using the factors OCT4, SOX2, c-MYC, and KLF4. The morphology and in vitro pluripotency maintenance potential (alkaline phosphatase detection, embryoid body formation, in vitro spontaneous differentiation, and expression of pluripotency markers) of the eiPSCs were characterized. Additionally, a miRNA profile analysis of the mesenchymal and eiPSCs was performed. Results. Multipotent cells were successfully isolated, but the eBMmsc failed to generate eiPSCs. The eADmsc-, eUCmsc-, and eFibros-derived iPSCs were positive for alkaline phosphatase, OCT4 and NANOG, were exclusively dependent on bFGF, and formed embryoid bodies. The miRNA profile revealed a segregated pattern between the eiPSCs and multipotent controls: the levels of miR-302/367 and the miR-92 family were increased in the eiPSCs, while the levels of miR-23, miR-27, and miR-30, as well as the let-7 family were increased in the nonpluripotent cells. Conclusions. We were able to generate bFGF-dependent iPSCs from eADmsc, eUCmsc, and eFibros with human OSKM, and the miRNA profile revealed that clonal lines may respond differently to the reprogramming process.


2020 ◽  
Vol 10 (7) ◽  
pp. 407
Author(s):  
Pierre-Antoine Faye ◽  
Nicolas Vedrenne ◽  
Federica Miressi ◽  
Marion Rassat ◽  
Sergii Romanenko ◽  
...  

Modelling rare neurogenetic diseases to develop new therapeutic strategies is highly challenging. The use of human-induced pluripotent stem cells (hiPSCs) is a powerful approach to obtain specialized cells from patients. For hereditary peripheral neuropathies, such as Charcot–Marie–Tooth disease (CMT) Type II, spinal motor neurons (MNs) are impaired but are very difficult to study. Although several protocols are available to differentiate hiPSCs into neurons, their efficiency is still poor for CMT patients. Thus, our goal was to develop a robust, easy, and reproducible protocol to obtain MNs from CMT patient hiPSCs. The presented protocol generates MNs within 20 days, with a success rate of 80%, using specifically chosen molecules, such as Sonic Hedgehog or retinoic acid. The timing and concentrations of the factors used to induce differentiation are crucial and are given hereby. We then assessed the MNs by optic microscopy, immunocytochemistry (Islet1/2, HB9, Tuj1, and PGP9.5), and electrophysiological recordings. This method of generating MNs from CMT patients in vitro shows promise for the further development of assays to understand the pathological mechanisms of CMT and for drug screening.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 703-703
Author(s):  
Naoya Takayama ◽  
Shinji Hirata ◽  
Ryoko Jono-Ohnishi ◽  
Sou Nakamura ◽  
Sho-ichi Hirose ◽  
...  

Abstract Abstract 703 Patient-specific, induced pluripotent stem cells (iPSCs) enable us to study disease mechanisms and drug screening. To clarify the phenotypic alterations caused by the loss of c-MPL, the thrombopoietin (TPO) receptor, we established iPSCs derived from skin fibroblasts of a patient who received curative bone marrow transplantation for congenital amegakarycytic thrombocytopenia (CAMT) caused by the loss of the TPO receptor gene, MPL. The resultant CAMT-iPSCs exhibited mutations corresponding to the original donor skin. Then using an in vitro culture system yielding hematopoietic progenitor cells (HPCs), we evaluated the role of MPL on the early and late phases of human hematopoiesis. Although CAMT-iPSCs generated CD34+ HPCs, per se, their colony formation capability was impaired, as compared to control CD34+ HPCs. Intriguingly, both Glycophorin A (GPA)+ erythrocyte development and CD41+ megakaryocyte yields from CAMT-iPSCs were also impaired, suggesting that MPL is indispensable for MEP (megakaryocyte erythrocyte progenitors) development. Prospective analysis along with the hematopoietic hierarchy revealed that, in CAMT-iPSCs but not control iPSCs expressing MPL, mRNA expression and phosphorylation of putative signaling molecules downstream of MPL are severely impaired, as is the transition from CD34+CD43+CD41-GPA- MPP (multipotent progenitors) to CD41+GPA+ MEP. Additional analysis also indicated that c-MPL is required for maintenance of a consistent supply of megakaryocytes and erythrocytes from MEPs. Conversely, complimentary transduction of MPL into CAMT-iPSCs using a retroviral vector restored the defective erythropoiesis and megakaryopoiesis; however, excessive MPL signaling appears to promote aberrant megakaryopoiesis with CD42b (GPIba)-null platelet generation and impaired erythrocyte production. Taken together, our findings demonstrate the usefulness of CAMT-iPSCs for validation of functionality in the human hematopoiesis system. For example, it appears that MPL is not indispensable for the emergence of HPCs, but is indispensible for their maintenance, and for subsequent MEP development. Our results also strongly indicate that an appropriate expression level of an administered gene is necessary to achieve curative gene correction / therapy using patient-derived iPSCs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Laurent Cotter ◽  
Feifan Yu ◽  
Juliette Duschene De Lamotte ◽  
Min Dong ◽  
Johannes Krupp ◽  
...  

Abstract Botulinum neurotoxins (BoNTs) have been widely used clinically as a muscle relaxant. These toxins target motor neurons and cleave proteins essential for neurotransmitter release like Synaptosomal-associated protein of 25 kDa (SNAP-25). Most in vitro assays for BoNT testing use rodent cells or immortalized cell lines, which showed limitations in accuracy and physiological relevance. Here, we report a cell-based assay for detecting SNAP25-cleaving BoNTs by combining human induced Pluripotent Stem Cells (hiPSC)-derived motor neurons and a luminescent detection system based on split nanoluc luciferase. This assay is convenient, rapid, free-of-specialized antibodies, and can discriminate the potency of different BoNTs, with a detection sensitivity of femtomolar concentrations of toxin and can be used to study the different steps of BoNT intoxication. Abreviations: BoNT, Botulinum neurotoxin, SNAP-25, Synaptosomal-associated protein of 25 kDa, hiPSC, human induced Pluripotent Stem Cells, SNARE, soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor, SV2, synaptic vesicle proteins, MLB, mouse lethality bioassay, LD50, toxin’s dose lethal for half of the animal injected, CB-assay, cell-based assays, FRET, Förster resonance energy transfer, Concanamycin A, EC50, Half maximal effective concentration, MNs, motor neurons.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yukti Choudhury ◽  
Yi Chin Toh ◽  
Jiangwa Xing ◽  
Yinghua Qu ◽  
Jonathan Poh ◽  
...  

Abstract Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.


Author(s):  
Xue Jiang ◽  
Yihuan Chen ◽  
Xiaofeng Liu ◽  
Lingqun Ye ◽  
Miao Yu ◽  
...  

In the past decades, researchers discovered the contribution of genetic defects to the pathogenesis of primary cardiomyopathy and tried to explain the pathogenesis of these diseases by establishing a variety of disease models. Although human heart tissues and primary cardiomyocytes have advantages in modeling human heart diseases, they are difficult to obtain and culture in vitro. Defects developed in genetically modified animal models are notably different from human diseases at the molecular level. The advent of human induced pluripotent stem cells (hiPSCs) provides an unprecedented opportunity to further investigate the pathogenic mechanisms of inherited cardiomyopathies in vitro using patient-specific hiPSC-derived cardiomyocytes. In this review, we will make a summary of recent advances in in vitro inherited cardiomyopathy modeling using hiPSCs.


Amyloid ◽  
2018 ◽  
Vol 25 (3) ◽  
pp. 148-155 ◽  
Author(s):  
Richard M. Giadone ◽  
Jessica D. Rosarda ◽  
Prithvi Reddy Akepati ◽  
Arianne C. Thomas ◽  
Batbold Boldbaatar ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. dmm046391
Author(s):  
Alessia Niceforo ◽  
Chiara Marioli ◽  
Fiorella Colasuonno ◽  
Stefania Petrini ◽  
Keith Massey ◽  
...  

ABSTRACTThe cytoskeletal network plays a crucial role in the differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient-specific induced pluripotent stem cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance. The present study focuses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by an impaired ability to re-polymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca2+ homeostasis, suggesting impaired differentiation. Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.


Acta Naturae ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 54-60 ◽  
Author(s):  
I. V. Chestkov ◽  
E. A. Vasilieva ◽  
S. N. Illarioshkin ◽  
M. A. Lagarkova ◽  
S. L. Kiselev

The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited, and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons.


Sign in / Sign up

Export Citation Format

Share Document