scholarly journals Development of End Plug Welding Technique for SFR Fuel Rod Fabrication

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Jung Won Lee ◽  
Jong Hwan Kim ◽  
Ki Hwan Kim ◽  
Jeong Yong Park ◽  
Sung Ho Kim

In Korea, R&D on a sodium-cooled fast reactor (SFR) was begun in 1997, as one of the national long-term nuclear R&D programs. As one fuel option for a prototype SFR, a metallic fuel, U-Zr alloy fuel, was selected and is currently being developed. For the fabrication of SFR metallic fuel rods, the end plug welding is a crucial process. The sealing of the end plug to the cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions, and parameters were developed for the end plug welding of SFR metallic fuel rods. A gas tungsten arc welding (GTAW) technique was adopted and the welding joint design was developed. In addition, the optimal welding conditions and parameters were established. Based on the establishment of the welding conditions, the GTAW technique was qualified for the end plug welding of SFR metallic fuel rods.

Author(s):  
V. Jagannathan ◽  
Usha Pal ◽  
R. Karthikeyan ◽  
Devesh Raj

Loading of seedless thoria rods in internal blanket regions and using them later as part of seeded fuel assemblies is the central theme of the thorium breeder reactor (ATBR) concept [1]. The fast reactors presently consider seedless blanket region surrounding the seeded core region. This results in slower fissile production rate in comparison to fissile depletion rate per unit volume. The overall breeding is achieved mainly by employing blanket core with more than double the volume of seeded core. The blanket fuel is discharged with fissile content of ∼30g/kg, which is much less than the asymptotic maximum possible fissile content of 100g/kg. This is due to smaller coolant flow provided for in the blanket regions. In a newly proposed fast thorium breeder reactor (FTBR) [2], the blanket region is brought in and distributed through out the core. By this the fissile depletion and production rates per unit volume become comparable. The core considered simultaneous breeding from both fertile thoria and depleted uranium and hence the concept can be called as fast twin breeder reactor as well. Sodium is used as coolant. The blanket fuel rods achieve nearly 80% of the seed fuel rod burnup and also contain nearly the maximum possible fissile content at the time of discharge. In this paper a comparison of FTBR core characteristics with oxide and metallic fuel are compared.


2016 ◽  
Vol 21 ◽  
pp. 201-213 ◽  
Author(s):  
K. Devendranath Ramkumar ◽  
Shah Vitesh Naren ◽  
Venkata Rama Karthik Paga ◽  
Ambuj Tiwari ◽  
N. Arivazhagan

Author(s):  
M Sathishkumar ◽  
M Manikandan

Alloy X is prone to liquation and solidification cracks in the weldments, because of the development of topologically close-packed precipitates such as σ, P, M6C, and M23C6 carbides during arc welding methods. The present work examines the possibility of alleviating the segregation of Cr and Mo content to eliminate the development of topologically close-packed phases using a conventional arc welding technique. The welding of Alloy X has been achieved with ERNiCrMo-2 filler material by gas tungsten arc welding and pulsed current gas tungsten arc welding technique. The optical microscope shows the refined microstructure in pulsed current gas tungsten arc with respect to gas tungsten arc welding. The Mo-rich segregation was identified in gas tungsten arc weldment, and the same was absent in pulsed current gas tungsten arc. These segregations of Mo-rich content encourage the development of M3C and M6C secondary precipitates in gas tungsten arc welding. Pulsed current gas tungsten arc welding shows the existence of NiCrCoMo precipitate. The present work confirmed the absence of P, σ, and M23C6 in both the weldments of Alloy X. The ultimate tensile strength, microhardness, and impact strength of pulsed current gas tungsten arc welding are increased by 3.39, 9.17, and 21.62%, respectively, with gas tungsten arc welding. The observed Mo-rich M3C and M6C secondary phases in the gas tungsten arc welding affect the tensile strength of the weldments.


Author(s):  
Shota Okui ◽  
Yuichiro Kubo ◽  
Shumpei Kakinoki ◽  
Roger Y. Lu ◽  
Zeses Karoutas ◽  
...  

A long-term flow-induced vibration and wear test was performed for a full-scale 17×17 PWR fuel mockup, and the test results were compared with numerical simulations. The flow-induced vibration on a fuel assembly or fuel rods may cause Grid-to-Rod Fretting (GTRF) and result in the leakage of fuel rods in PWRs. GTRF involves non-linear vibration of a fuel rod due to the excitation force induced by coolant flow around a fuel rod. So, the numerical simulation is performed by VITRAN (Vibration Transient Analysis Non-linear) and Computational Fluid Dynamics (CFD). VITRAN code was developed by Westinghouse to simulate fuel rod flow induced vibration and GTRF. In this paper, it was confirmed that the code can reproduce GTRF wear for NFI fuel assembly. CFD calculation is performed to obtain the axial and lateral flow velocity around the fuel rods, reflecting detailed geometries of fuel assembly components like bottom nozzle, spacer grids. The numerical simulation reasonably reproduced the vibration and wear test for NFI fuel assembly.


Alloy Digest ◽  
1992 ◽  
Vol 41 (9) ◽  

Abstract INCONEL FILLER METAL 52 is a high chromium filler metal for gas-metal-arc and gas-tungsten-arc welding of Inconel Alloy 690 (See Alloy Digest Ni-266, March 1981). Higher chromium is beneficial in resisting stress-corrosion cracking in high purity water for pressurized water reactors and for resistance to oxidizing acids. This datasheet provides information on composition and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-412. Producer or source: Inco Alloys International Inc..


Sign in / Sign up

Export Citation Format

Share Document