scholarly journals One-Step Green Synthesis of Metallic Nanoparticles Using Sodium Alginate

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jesus Valdez ◽  
Idalia Gómez

Metallic nanoparticles have been focus of research because of their characteristic properties, specifically the LSPR which can have wide applications in biomedical sciences and engineering. Currently, traditional physical and chemical methods can synthesize these nanoparticles but their disadvantages such as costs, time, effectiveness, and toxicity of precursors provide a wide range of problems for the synthesis of these nanoparticles. Recently, some natural polymers and organic compounds have been used for the synthesis of nanoparticles by green methods. In this study, we synthesize copper, silver, and gold nanoparticles using sodium alginate as reducing and stabilizing agent under microwave irradiation. The LSPR for each system was observed by UV-vis spectroscopy. Particle size distribution and zeta potential demonstrate the size and stability for these nanoparticles. FESEM and TEM microscopies have shown the size and morphology of these systems correlated with UV-vis, particle size distribution, and zeta potential analyses. The study demonstrates a rapid, facile, cheaper, and one-step green method of synthesis for these metallic nanoparticles being an alternative to the conventional methods used for synthesis of metallic nanoparticles.

Author(s):  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirzai

Erosion equations are usually obtained from experiments by impacting solid particles entrained in a gas or liquid on a target material. The erosion equations are utilized in CFD (Computational Fluid Dynamics) models to predict erosion damage caused by solid particle impingements. Many erosion equations are provided in terms of an erosion ratio. By definition, the erosion ratio is the mass loss of target material divided by the mass of impacting particles. The mass of impacting particles is the summation of (particle mass × number of impacts) of each particle. In erosion experiments conducted to determine erosion equations, some particles may impact the target wall many times and some other particles may not impact the target at all. Therefore, the experimental data may not reflect the actual erosion ratio because the mass of the sand that is used to run the experiments is assumed to be the mass of the impacting particles. CFD and particle trajectory simulations are applied in the present work to study effects of multiple impacts on developing erosion ratio equations. The erosion equation as well as the CFD-based erosion modeling procedure is validated against a variety of experimental data. The results show that the effect of multiple impacts is negligible in air cases. In water cases, however, this effect needs to be accounted for especially for small particles. This makes it impractical to develop erosion ratio equations from experimental data obtained for tests with sand in water or dense gases. Many factors affecting erosion damage are accounted for in various erosion equations. In addition to some well-studied parameters such as particle impacting speed and impacting angle, particle size also plays a significant role in the erosion process. An average particle size is usually used in analyzing experimental data or estimating erosion damage cases of practical interest. In petroleum production applications, however, the size of sand particles that are entrained in produced fluids can vary over a fairly broad range. CFD simulations are also performed to study the effect of particle size distribution. In CFD simulations, particle sizes are normally distributed with the mean equaling the average size of interest and the standard deviation varying over a wide range. Based on CFD simulations, an equation is developed and can be applied to account for the effect of the particle size distribution on erosion prediction for gases and liquids.


2012 ◽  
Vol 512-515 ◽  
pp. 261-264
Author(s):  
Li Shen ◽  
Jin Hu ◽  
Da Ping Wu

As anionic surfactant, a commercial salt of lauryl sodium sulfate was used. The effects of different amounts of dispersant on the measurement of particle size distribution between two titanium dioxide powders (anatase and rutile) in aqueous media were discussed. Diluted aqueous suspensions were characterized in terms of particle size distribution and zeta potential. The results demonstrate that the measurement of particle size distribution strongly depends on the amounts of dispersant. The amounts of dispersant have a significant effect on the behavior of the rutile-TiO2 particles. The particle size first decreases significantly with an increase in the amounts of dispersant and then lesser increases with a further increase in the amounts of dispersant. The tendency show significant differences between two particles.


2006 ◽  
Vol 6 (1) ◽  
pp. 95-103 ◽  
Author(s):  
D.H. Kwak ◽  
S.J. Kim ◽  
H.J. Jung ◽  
C.H. Won ◽  
S.B. Kwon ◽  
...  

The raw water characteristics of a water treatment plant in Korea are mainly dependent on two major factors: the clay particles attributed to rainfall and blue-green algae in reservoirs. In this work, zeta potential and particle size distributions of clay and algae particles, which are the important parameters affecting their removal efficiency, were measured to investigate the behavior and removal characteristics of particles under various conditions. The results showed that the zeta potential of blue-green algae was more sensitive to treatment conditions than clay, and it fluctuated highly with coagulant dosage, suggesting that the control of zeta potential is important for effective removal of algae particles. On the other hand, the range of particle size distribution that remained from the preliminary sedimentation tank was generally smaller than for flotation. However, the zeta potential of the remaining particles was either close to the isoelectric point or positive, and the particles were not so hard to remove for that reason. In the final analysis, for simultaneous removal of clay and algae particles, a sufficient zeta potential difference must be formed not only for algae particles but also for small clay particles from the sedimentation tank in the dissolved air flotation process.


2020 ◽  
Author(s):  
Cagla Temiz ◽  
Fikret Ari ◽  
Selen Deviren Saygin ◽  
Sefika Arslan ◽  
Mehmet Altay Unal ◽  
...  

<p>Soil cohesion (Co) is one of the most important physical soil characteristics and it is closely related to the basic soil properties and physical distribution forces (e.g. particle size distribution, pore sizes, shear strength) and so it is mostly determined by experimentally approaches with the help of other soil properties in general terms. Instead of using these assumptions, the fluidized bed approach provides an opportunity for direct measurement of intrinsic soil cohesion. In this study, soil cohesion development for different soil types was investigated with the fluid-bed method by which pressure drop in soil mass measures under increasing water pressures until the cohesion between particles disappears. For this purpose, 20 different soils varying with a wide range of relevant soil physical properties were sampled; such that clay, silt and sand contents varied between 2% and 56%, 1% and 50%, and 1% and 97%, respectively while porosity values were between 0.38 and 0.92. By those textural diversities of the soils, obtained cohesion values changed between 5203 N m<sup>-3</sup> and 212276 N m<sup>-3</sup>. Given results from regression analysis, a significant relationship was found between cohesion values of the soils and their porosity and silt fractions (R<sup>2</sup>: 86.6).These findings confirm that the method has a high potential to reflect differential conditions and show that soil cohesion could be modeled by such basic and easily obtainable parameters as particle size distribution and porosity, as well.<strong> </strong></p><p><strong>Key words</strong>; <strong>Mechanical soil cohesion, particle size distribution, fluidized bed approach, porosity</strong></p>


Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna ◽  
Cholachat Rujikiatkamjorn

Internal erosion is a phenomenon whereby the filtrates under the influence of significant seepage forces accompany the finer fraction from potential internally unstable filters (e.g. broadly- and gap-graded soil), occasionally rendering them ineffective. The filter assessment for internal erosion or instability potential is emphasized through particle size distribution based geometrical criteria ignoring the effect of compaction. In this study, the results of hydraulic gradient controlled internal erosion tests conducted over a wide range of compacted sand-gravel mixtures were used to analyse some of the available geometrical criteria, which interestingly showed partial success in assessing the filter’s internal erosion potential. It was revealed that the occurrence of internal erosion is a combined function of particle size distribution and the relative density of soils that had been ignored in many of the existing criteria. A comparison between the assessments obtained from some of the particle size based criteria and that from a constriction size based technique was reported for a large body of published data. It was observed that the latter criterion, which incorporates the effects of both particle size distribution and relative density of soils in tandem, could assess the reported test results with higher accuracy.


2020 ◽  
Vol 10 (2) ◽  
pp. 5-11
Author(s):  
Sankha Bhattacharya ◽  
Vishal Puri ◽  
Shubham Sharma ◽  
Debasish Sahoo ◽  
Pradeep Kumar Pal ◽  
...  

Aim: The main aim of this article is to prepare and evaluate sodium alginate microparticles and evaluate on the basis of their characterization. The drug is dissolved, encapsulated or attached to a microparticles matrix. Depending upon method of preparation microparticles were obtained. Microparticles were developed as a carrier for vaccines and other disease like rheumatoid arthritis, cancer etc. Microparticles were developed to increase the efficacy of active pharmaceutical ingredient to a specific targeted site. Material and Method: Microparticles of Sodium Alginate, Pepsin and Calcium Chloride were prepared in six batches (A-F) with different ratio of sodium alginate and calcium chloride respectively i.e. (0.25:2.5), (0.25:5), (0.25:7.5), (0.5:2.5), (0.5:5), (0.5:7.5) by using a homogenizing method. Microparticles were evaluated for particle size distribution, zeta potential and morphology. Result and Discussion:  The normal particle size of each of the six batches were analyzed by Zeta Sizer (Delsa C Particle Analyzer) and it was found that the Batch B (0.25:5) delivered the best microparticles with size distribution of 1.2731 (µm). All batches were seen under Motic magnifying microscope by using the Sulforhodamine B (M.W. 479.02) color as staining dye. Microparticles was found to be semi spherical in shape. Conclusion: Results of all the six batches was contrasted based on particle size investigation, zeta potential and morphology. Batch B (0.25:5) was considered as the best formulation. Key words:  Micro Particle, Pepsin, Sodium Alginate and Calcium Chloride, Sulforhodamine B, Zeta Sizer.


Author(s):  
Faisalina Ahmad Fisol ◽  
Fabio Sonvico ◽  
Paolo Colombo ◽  
Amirul Al-Ashraf Abdullah ◽  
Habibah A. Wahab ◽  
...  

Polyhydroxyalkanoate (PHA) co-polymers show relatively higher in vivo degradation rate compared to other PHAs thus they received a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water soluble anticancer drug docetaxel (DCX) were produced using poly 3-hydroxybutyrate-co-4-hydroxybutyrate, P(3HB-co-4HB), co-polymers biosynthesised from Cupriavidus sp. USMAA1020 isolated from Malaysian environment. Three co-polymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Pre-formulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in term of average particles sizes around 150 nm and narrow particle size distribution (PDI below 0.100). The encapsulation efficiencies result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticles system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug to polymer ratio while for the 30% and 40% drug to polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1669
Author(s):  
Jianlin Ren ◽  
Junjie He ◽  
Jiayu Li ◽  
Junjie Liu

The SARS-CoV virus spreads in the atmosphere mainly in the form of aerosols. Particle air filters are widely used in indoor heating, ventilation, and air-conditioning (HVAC) systems and filtration equipment to reduce aerosol concentration and improve indoor air quality. Requirements arise to rate filters according to their mass-based filtration efficiency. The size distribution of test aerosol greatly affects the measurement results of mass-based filtration efficiency and dust loading of filters, as well as the calibration of optical instruments for fine-particle (PM2.5) mass concentration measurement. The main objective of this study was to find a new method to generate a chemically nontoxic aerosol with a similar particle size distribution to atmospheric aerosol. We measured the size distribution of aerosols generated by DEHS (di-ethyl-hexyl-sebacate), PSL (poly-styrene latex), olive oil, and 20% sucrose solution with a collision nebulizer in a wide range of 15 nm–20 μm. Individually, none of the solutions generated particles that share a similar size distribution to atmospheric aerosol. We found that the 20% sucrose solution + olive oil mixture solution (Vss:Voo = 1:2) could be used to generate a chemically nontoxic aerosol with similar particle number/volume size distribution to the atmospheric aerosol (t-test, p < 0.05). The differences in the mass-base filtration efficiency measured by the generated aerosol and the atmospheric aerosol were smaller than 2% for MERV 7, 10, 13, and 16 rated filters. The aerosol generated by the new method also performed well in the calibration of optical-principle-based PM2.5 concentration measurement instruments. The average relative difference measured by a tapered element oscillating microbalance (TEOM) and a Dusttrak Model 8530 (calibrated by aerosol generated by the new method) was smaller than 5.8% in the real-situation measurement.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Ankang Liu ◽  
Honglei Wang ◽  
Yi Cui ◽  
Lijuan Shen ◽  
Yan Yin ◽  
...  

Particle size distribution, water soluble ions, and black carbon (BC) concentration in a long-term haze-fog episode were measured using a wide-range particle spectrometer (WPS), a monitor for aerosols and gases (MARGA), and an aethalometer (AE33) in Nanjing from 16 to 27 November, 2018. The observation included five processes of clean, mist, mix, haze, and fog. Combined with meteorological elements, the HYSPLIT model, and the IMPROVE model, we analyzed the particle size distribution, chemical composition, and optical properties of aerosols in different processes. The particle number size distribution (PNSD) in five processes differed: It was bimodal in mist and fog and unimodal in clean, mix, and haze. The particle surface area size distribution (PSSD) in different processes showed a bimodal distribution, and the second peak of the mix and fog processes shifted to a larger particle size at 480 nm. The dominant air masses in five processes differed and primarily originated in the northeast direction in the clean process and the southeast direction in the haze process. In the mist, mix, and fog processes local air masses dominated. NO3− was the primary component of water soluble ions, with the lowest proportion of 45.6% in the clean process and the highest proportion of 53.0% in the mix process. The ratio of NH4+ in the different processes was stable at approximately 23%. The ratio of SO42− in the clean process was 26.2%, and the ratio of other processes was approximately 20%. The average concentration of BC in the fog processes was 10,119 ng·m−3, which was 3.55, 1.80, 1.60, and 1.46 times that in the processes of clean, mist, mix, and haze, respectively. In the different processes, BC was primarily based on liquid fuel combustion. NO3−, SO42−, and BC were the main contributors to the atmospheric extinction coefficient and contributed more than 90% in different processes. NO3− contributed 398.43 Mm−1 in the mix process, and SO42− and BC contributed 167.90 Mm−1 and 101.19 Mm−1, respectively, during the fog process.


2019 ◽  
Vol 58 (36) ◽  
pp. 9955
Author(s):  
J. Gabriela Calvillo-Vázquez ◽  
Hugo A. Guillén-Ramírez ◽  
Melissa DiazDuarte-Rodríguez ◽  
Angel Licea-Claverie ◽  
Eugenio R. Méndez

Sign in / Sign up

Export Citation Format

Share Document