scholarly journals The Regulatory Role of Nuclear Factor Kappa B in the Heart of Hereditary Hypertriglyceridemic Rat

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Stanislava Vranková ◽  
Andrej Barta ◽  
Jana Klimentová ◽  
Ima Dovinová ◽  
Silvia Líšková ◽  
...  

Activation of nuclear factor-κB (NF-κB) by increased production of reactive oxygen species (ROS) might induce transcription and expression of different antioxidant enzymes and also of nitric oxide synthase (NOS) isoforms. Thus, we aimed at studying the effect of NF-κB inhibition, caused by JSH-23 (4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine) injection, on ROS and NO generation in hereditary hypertriglyceridemic (HTG) rats. 12-week-old, male Wistar and HTG rats were treated with JSH-23 (bolus, 10μmol, i.v.). After one week, blood pressure (BP), superoxide dismutase (SOD) activity, SOD1, endothelial NOS (eNOS), and NF-κB (p65) protein expressions were higher in the heart of HTG rats compared to control rats. On the other hand, NOS activity was decreased. In HTG rats, JSH-23 treatment increased BP and heart conjugated dienes (CD) concentration (measured as the marker of tissue oxidative damage). Concomitantly, SOD activity together with SOD1 expression was decreased, while NOS activity and eNOS protein expression were increased significantly. In conclusion, NF-κB inhibition in HTG rats led to decreased ROS degradation by SOD followed by increased oxidative damage in the heart and BP elevation. In these conditions, increased NO generation may represent rather a counterregulatory mechanism activated by ROS. Nevertheless, this mechanism was not sufficient enough to compensate BP increase in HTG rats.

2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


2000 ◽  
Vol 279 (3) ◽  
pp. F573-F583 ◽  
Author(s):  
Radko Komers ◽  
Jessie N. Lindsley ◽  
Terry T. Oyama ◽  
Kristen M. Allison ◽  
Sharon Anderson

Nitric oxide (NO) has been implicated in the pathogenesis of renal hemodynamic changes in diabetes mellitus. However, the contribution of nitric oxide synthase (NOS) isoforms to intrarenal production of NO in diabetes remains unknown. To explore the role of NOS1 in the control of renal hemodynamics in diabetes, we assessed renal responses to inhibition of NOS1 with S-methyl-l-thiocitrulline (SMTC; administered into the abdominal aorta) in moderately hyperglycemic streptozotocin-diabetic rats (D) and their nondiabetic (C) and normoglycemic diabetic counterparts. The contribution of other NOS isoforms was also evaluated by assessing the responses to nonspecific NOS inhibition [ N G-nitro-l-arginine methyl ester (l-NAME)] in SMTC-treated diabetic rats. The number of NOS1-positive cells in macula densa of D and C kidneys was also evaluated by immunohistochemistry. D rats demonstrated elevated glomerular filtration rate (GFR) compared with C. SMTC (0.05 mg/kg) normalized GFR in D but had no effect in C. SMTC-induced reduction of renal plasma flow (RPF) was similar in C and D. Normoglycemic diabetic rats demonstrated blunted renal hemodynamic responses to NOS1 inhibition compared with hyperglycemic animals. Mean arterial pressure was stable in all groups. l-NAME induced a further decrease in RPF, but not in GFR, in D rats treated with SMTC. Immunohistochemistry revealed increased numbers of NOS1-positive cells in D. These observations suggest that NOS1-derived NO plays a major role in the pathogenesis of renal hemodynamic changes early in the course of diabetes. NOS1 appears to be the most important isoform in the generation of hemodynamically active NO in this condition.


2004 ◽  
Vol 11 (3) ◽  
pp. 525-531 ◽  
Author(s):  
Sandip A. Godambe ◽  
Katherine M. Knapp ◽  
Elizabeth A. Meals ◽  
B. Keith English

ABSTRACT vav1 has been shown to play a key role in lymphocyte development and activation, but its potential importance in macrophage activation has received little attention. We have previously reported that exposure of macrophages to bacterial lipopolysaccharide (LPS) leads to increased activity of hck and other src-related tyrosine kinases and to the prompt phosphorylation of vav1 on tyrosine. In this study, we tested the role of vav1 in macrophage responses to LPS, focusing on the upregulation of nuclear factor for interleukin-6 expression (NF-IL-6) activity and inducible nitric oxide synthase (iNOS) protein accumulation in RAW-TT10 murine macrophages. We established a series of stable cell lines expressing three mutant forms of vav1 in a tetracycline-regulatable fashion: (i) a form producing a truncated protein, vavC; (ii) a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and (iii) a form with an in-frame deletion of 6 amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt. Expression of the truncated mutant (but not the other two mutants) has been reported to interfere with T-cell activation. In contrast, we now demonstrate that expression of any of the three mutant forms of vav1 in RAW-TT10 cells consistently inhibited LPS-mediated increases in iNOS protein accumulation and NF-IL-6 activity. These data provide direct evidence for a role for vav1 in LPS-mediated macrophage activation and iNOS production and suggest that vav1 functions in part via activation of NF-IL-6. Furthermore, these findings indicate that the GEF activity of vav1 is required for its ability to mediate macrophage activation by LPS.


2013 ◽  
Vol 91 (12) ◽  
pp. 1025-1030 ◽  
Author(s):  
Saadet Turkseven ◽  
Elif Ertuna

AMP-activated protein kinase (AMPK) is a regulator of cellular metabolism and is involved in the pathogenesis of several diseases, including type 2 diabetes and cardiovascular diseases. Data showing the effects of AMPK on vasculature are controversial. Therefore, the aim of this study was to determine the impact of prolonged AMPK activation on vascular functions. For this purpose we have examined the role of AMPK in endothelium-dependent and -independent relaxation and vascular contractions. For this, we incubated thoracic aortic rings, from rats, with AMPK activator 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR, 500 μmol/L or 2 mmol/L) in the presence or absence of AMPK inhibitor compound C (10 μmol/L). Next, cumulative dose–response curves to acetylcholine (ACh) (10−9−10−4 mol/L), nitroglycerine (NG) (10−9–3 × 10−5 mol/L), and noradrenaline (NA) (10−9−10−4 mol/L) were obtained. Endothelial nitric oxide synthase (eNOS) protein expression was determined. Our results show that endothelium-dependent relaxation was inhibited after AICAR treatment, and that this effect was reversed by AMPK inhibition. Moreover, AICAR enhanced the contractile response to NA and caused a decrease in eNOS protein expression. In conclusion, prolonged AMPK induction causes endothelial impairment, possibly via increased degradation and (or) reduced expression of eNOS.


Sign in / Sign up

Export Citation Format

Share Document