scholarly journals Epidemiology of Respiratory Pathogens among Elderly Nursing Home Residents with Acute Respiratory Infections in Corsica, France, 2013–2017

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shirley Masse ◽  
Lisandru Capai ◽  
Alessandra Falchi

Background. The current study aims to describe the demographical and clinical characteristics of elderly nursing home (NH) residents with acute respiratory infections (ARIs) during four winter seasons (2013/2014–2016/2017), as well as the microbiological etiology of these infections. Methods. Seventeen NHs with at least one ARI resident in Corsica, France, were included. An ARI resident was defined as a resident developing a sudden onset of any constitutional symptoms in addition to any respiratory signs. Nasopharyngeal swabs from ARI residents were screened for the presence of 21 respiratory agents, including seasonal influenza viruses. Results. Of the 107 ARI residents enrolled from NHs, 61 (57%) were positive for at least one of the 21 respiratory pathogens. Forty-one (38.3%) of the 107 ARI residents had influenza: 38 (92%) were positive for influenza A (100% A(H3N2)) and three (8%) for influenza B/Victoria. Axillary fever (≥38°C) was significantly more common among patients infected with influenza A(H3N2). Conclusion. The circulation of seasonal respiratory viruses other than influenza A(H3N2) seems to be sporadic among elderly NH residents. Investigating the circulation of respiratory viruses in nonwinter seasons seems to be important in order to understand better the dynamic of their year-round circulation in NHs.

1999 ◽  
Vol 20 (12) ◽  
pp. 812-815 ◽  
Author(s):  
Paul J. Drinka ◽  
Stefan Gravenstein ◽  
Elizabeth Langer ◽  
Peggy Krause ◽  
Peter Shult

AbstractObjective:To compare mortality following isolation of influenza A to mortality following isolation of other respiratory viruses in a nursing home.Setting:The Wisconsin Veterans Home, a 688-bed skilled nursing facility for veterans and their spouses.Participants:All residents with respiratory viral isolates obtained between 1988 and 1999.Design:Thirty-day mortality was determined following each culture-proven illness.Results:Thirty-day mortality following isolation of viral respiratory pathogens was 4.7% (15/322) for influenza A 5.4% (7/129) for influenza B; 6.1% (3/49) for parainfluenza type 1; 0% (0/26) for parainfluenza types 2,3, and 4; 0% (0/26) for respiratory syncytial virus (RSV); and 1.6% (1/61) for rhinovirus.Conclusions:Mortality following isolation of certain other respiratory viruses may be comparable to that following influenza A (although influenza A mortality might be higher without vaccination and antiviral agents). The use of uniform secretion precautions for all viral respiratory illness deserves consideration in nursing homes.


Author(s):  
Montaha Al-Iede ◽  
Lena Sarhan ◽  
Leen Abushanab ◽  
Tamara Ayasrah ◽  
Rafaa Al Maani ◽  
...  

Background: Influenza virus and other respiratory viruses have been identified as an essential cause of acute respiratory infections (ARIs) in children worldwide. However, there are few data on its frequency and clinical presentation in Jordan. Objectives: We aimed to identify the viral etiology of acute respiratory infections and the various clinical presentations in hospitalized children, especially those with influenza viruses compared to other respiratory viruses. Methods: A retrospective study that was conducted at the Jordan university hospital. All the positive nasopharyngeal aspirates that were collected from hospitalized children aged 0-19 years from January 2017 to January 2019 were reviewed. Results: A total of 338 nasopharyngeal aspirates (NPAs) with positive viral serology results were reviewed. Among the patients younger than four years, the RSV virus was the most frequently detected. However, the Influenza B virus was the most commonly seen in patients older than 5 years, H1N1 was more frequent in autumn (29.5%), and RSV was the most frequent virus in winter. Bronchopneumonia was the most frequent diagnosis among all hospitalized patients, followed by bronchiolitis. Out of 338 patients, 50.3 % had tachypnea, 70.7% of patients were admitted to the pediatric floor, while 18.6% presented with a severe illness and required admission to the pediatric intensive care unit (PICU). Infants under the age of one were more likely to have higher co-infection rates with other viruses compared to children over five years that had influenza. Conclusion: Presentations of influenza and other respiratory viruses vary between different age groups, such as sepsis in children younger than one year.


Author(s):  
Iman S. Naga ◽  
Gamal Eldin Elsawaf ◽  
Mahmoud Elzalabany ◽  
Mohamed Youssef Eltalkhawy ◽  
Ola Kader

Abstract Respiratory infections have a significant impact on health worldwide. Viruses are major causes of acute respiratory infections among children. Limited information regarding its prevalence in Egypt is available. This study investigated prevalence of 10 respiratory viruses; Adenovirus, influenza A, B, respiratory syncytial virus (RSV), Parainfluenza virus (PIV)type 1-4, enterovirus, and human coronavirus OC43 (HCoV-OC43) among children in Alexandria, Egypt presenting with acute lower respiratory tract infections. The study was conducted on children <14 years of age selected from ElShatby Pediatric Hospital, Alexandria University, Egypt. One hundred children presenting during winter season with influenza-like illness were eligible for the study. Oropharyngeal swabs were collected and subjected to viral RNA and DNA extraction followed by polymerase chain reaction. Viral infections were detected in 44% of cases. Adenovirus was the most common, it was found in 19% of the patients. Prevalence of PIV (3 and 4) and enterovirus was 7% each. Prevalence of RSV and HCoV-OC43 was 5% and 3% respectively. Two percentage were Influenza A positive and 1% positive for influenza B. Mixed viral infection was observed in 7%. To the best of our knowledge, this is the first report of the isolation of HCoV-OC43 from respiratory infections in Alexandria, Egypt.


2021 ◽  
Vol 21 (3) ◽  
pp. 123-126
Author(s):  
Evgeniya Viktorovna Lelenkova ◽  
Alexandr Yurievich Markaryan

BACKGROUND: Acute respiratory viral infections are ubiquitous. Part of the cases are severe and require hospital treatment. AIM: Studying the etiology of severe acute respiratory infections in patients of Ekaterinburg hospitals in different epidemic seasons (from 2017 to 2020). MATERIALS AND METHODS: 1,132 cases of severe acute respiratory infection were assessed. The structure of laboratory-confirmed cases was determined. RESULTS: In the assessed seasons, the proportion of respiratory viruses in the etiological structure of severe acute respiratory infections was 56.0% on average. B/Yamagata lineage of influenza viruses was predominant in the season of 2017/2018 (23.9% from the total number of respiratory viruses), influenza А (H1N1)pdm09 viruses were predominant in the season of 2018/2019 (27.7%), and influenza A and B viruses were identified in 2019/2020 (39.4% and 31.7%, respectively). СONCLUSIONS: The obtained results confirm a key role of influenza viruses in the etiology of severe acute respiratory infections among the hospital patients in different epidemic seasons.


2014 ◽  
Vol 66 (1) ◽  
pp. 43-50 ◽  
Author(s):  
J. Radovanov ◽  
V. Milosevic ◽  
I. Hrnjakovic ◽  
V. Petrovic ◽  
M. Ristic ◽  
...  

At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88) positive samples in 2010/11, 63.4% (52/82) in 2011/12, and 49.9% (184/369) in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1)pdm09 in 2010/11, A (H3N2) in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65.


Author(s):  
Maria Antonia De Francesco ◽  
Caterina Pollara ◽  
Franco Gargiulo ◽  
Mauro Giacomelli ◽  
Arnaldo Caruso

Different preventive public health measures were adopted globally to limit the spread of SARS-CoV-2, such as hand hygiene and the use of masks, travel restrictions, social distance actions such as the closure of schools and workplaces, case and contact tracing, quarantine and lockdown. These measures, in particular physical distancing and the use of masks, might have contributed to containing the spread of other respiratory viruses that occurs principally by contact and droplet routes. The aim of this study was to evaluate the prevalence of different respiratory viruses (influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses 1, 2, 3 and 4, rhinovirus, adenovirus, metapneumovirus and human coronaviruses) after one year of the pandemic. Furthermore, another aim was to evaluate the possible impact of these non-pharmaceutical measures on the circulation of seasonal respiratory viruses. This single center study was conducted between January 2017–February 2020 (pre-pandemic period) and March 2020–May 2021 (pandemic period). All adults >18 years with respiratory symptoms and tested for respiratory pathogens were included in the study. Nucleic acid detection of all respiratory viruses was performed by multiplex real time PCR. Our results show that the test positivity for influenza A and B, metapneumovirus, parainfluenza virus, respiratory syncytial virus and human coronaviruses decreased with statistical significance during the pandemic. Contrary to this, for adenovirus the decrease was not statistically significant. Conversely, a statistically significant increase was detected for rhinovirus. Coinfections between different respiratory viruses were observed during the pre-pandemic period, while the only coinfection detected during pandemic was between SARS-CoV-2 and rhinovirus. To understand how the preventive strategies against SARS-CoV-2 might alter the transmission dynamics and epidemic patterns of respiratory viruses is fundamental to guide future preventive recommendations.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Checivich ◽  
Shari Barlow ◽  
Peter Shult ◽  
Erik Residorf ◽  
Jonathan L. Temte

ObjectiveTo assess the feasibility of conducting respiratory virus surveillance for residents of long term care facilities (LTCF) using simple nasal swab specimens and to describe the virology of acute respiratory infections (ARI) in LCTFs.IntroductionAlthough residents of LTCFs have high morbidity and mortality associated with ARIs, there is very limited information on the virology of ARI in LTCFs.[1,2] Moreover, most virological testing of LCTF residents is reactive and is triggered by a resident meeting selected surveillance criteria. We report on incidental findings from a prospective trial of introducing rapid influenza diagnostic testing (RIDT) in ten Wisconsin LTCFs over a two-year period with an approach of testing any resident with ARI.MethodsAny resident with new onset of respiratory symptoms consistent with ARI had a nasal swab specimen collected for RIDT by nursing staff. Following processing for RIDT (Quidel Sofia Influenza A+B FIA), the residual swab was placed into viral transport medium and forwarded to the Wisconsin State Laboratory of Hygiene and tested for influenza using RT-PCR (IVD CDC Human Influenza Virus Real-Time RT-PCR Diagnostic Panel), and for 17 viruses (Luminex NxTAG Respiratory Pathogen Panel [RPP]). The numbers of viruses in each of 7 categories [influenza A (FluA ), influenza B (FluB), coronaviruses (COR), human metapneumovirus (hMPV), parainfluenza (PARA), respiratory syncytial virus (RSV) and rhinovirus/enterovirus (R/E)], across the two years were compared using chi-square.ResultsTotals of 164 and 190 specimens were submitted during 2016-2017 and 2017-2018, respectively. RPP identified viruses in 56.2% of specimens, with no difference in capture rate between years (55.5% vs. 56.8%). Influenza A (21.5%), influenza B (16.5%), RSV (19.0%) and hMPV (16.5%) accounted for 73.5% of all detections, while coronaviruses (15.5%), rhino/enteroviruses (8.5%) and parainfluenza (2.5%) were less common. Specific distribution of viruses varied significantly across the two years (Table: X2=48.1, df=6; p<0.001).ConclusionsSurveillance in LTCFs using nasal swabs collected for RIDT is highly feasible and yields virus identification rates similar to those obtained in clinical surveillance of ARI with collection of nasopharyngeal specimens by clinicians and those obtained in a school-based surveillance project of ARI with collection of combined nasal and oropharyngeal specimens collected by trained research assistants. Significant differences in virus composition occurred across the two study years. RSV varied little between years while hMPV demonstrated wide variation. Simple approaches to surveillance may provide a more comprehensive assessment of respiratory viruses in LTCF settings.References(1) Uršič T, Gorišek Miksić N, Lusa L, Strle F, Petrovec M. Viral respiratory infections in a nursing home: a six-month prospective study. BMC Infect Dis. 2016; 16: 637. Published online 2016 Nov 4. doi: 10.1186/s12879-016-1962-8(2) Masse S, Capai L, Falchi A. Epidemiology of Respiratory Pathogens among Elderly Nursing Home Residents with Acute Respiratory Infections in Corsica, France, 2013–2017. Biomed Res Int. 2017; 2017: 1423718. Published online 2017 Dec 17. doi: 10.1155/2017/1423718


Author(s):  
A.I. Vlad ◽  
T.E. Sannikova ◽  
A.A. Romanyukha

An incidence curve of acute respiratory infections in Moscow has three picks between September and April and reaches its maximum in January- February. The emergence of new strains of influenza A could account for only one pick a year. The most cases of common cold are caused by ubiquitous low pathogenic viruses. In order to simulate weekly fluctuation of incidence rate of acute respiratory illnesses we developed an agent-based model. It contains 10 millions agents with such attributes as sex, age, social status, levels of specific immune memory and lists of contacts. Each agent can contact with members of its household, colleagues or classmates. Through such contacts susceptible agent can be infected with one of seven circulating respiratory viruses. Viruses differ in their immunologic properties and assume to present influenza A virus, influenza B virus, parainfluenza, adenovirus, coronavirus, rhinovirus and respiratory syncytial virus. The rate of transmission depends on duration of contact, vulnerability of susceptible agent, infectivity of infected agent and air temperature. Proposed network of social interactions proved to be sufficiently detailed as it provided good fitting for observed incidence rate including periods of school holidays and winter public holidays. Additionally, the estimates of basic reproductive rate for the viruses confirm that all these viruses except new strains of influenza A are relatively harmless and unable to cause significant growth of acute respiratory infections morbidity.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 823
Author(s):  
Huifen Zhou ◽  
Jen-Hui Tsou ◽  
Molangur Chinthalapally ◽  
Hongjie Liu ◽  
Feng Jiang

SARS-CoV-2, influenza, and respiratory syncytial viruses (RSVs) cause acute respiratory infections with similar symptoms. Since the treatments and outcomes of these infections are different, the early detection and accurate differentiation of the viruses are clinically important for the prevention and treatment of the diseases. We previously demonstrated that clustered regularly interspaced short palindromic repeats (CRISPR) could rapidly and precisely detect SARS-CoV-2. The objective of this study was to develop CRISPR as a test for simultaneously detecting and accurately distinguishing the viruses. The CRISPR assay with an RNA guide against each virus was performed in the reference standards of SARS-CoV-2, influenza A and B, and RSV. The CRISPR assay had a limit of detection of 1–100 copies/µL for specifically detecting SARS-CoV-2, influenza A and B, and RSV without cross-reaction with other respiratory viruses. The validation of the test in nasopharyngeal specimens showed that it had a 90–100% sensitivity and 100% specificity for the detection of SARS-CoV-2, influenza A and B, and RSV. The CRISPR assay could potentially be used for sensitive detection and specific differentiation of the respiratory viruses.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neli Korsun ◽  
Svetla Angelova ◽  
Ivelina Trifonova ◽  
Silvia Voleva ◽  
Iliana Grigorova ◽  
...  

Нuman bocaviruses (hBoVs) are often associated with acute respiratory infections (ARIs). Information on the distribution and molecular epidemiology of hBoVs in Bulgaria is currently limited. The objectives of this study were to investigate the prevalence and genetic characteristics of hBoVs detected in patients with ARIs in Bulgaria. From October 2016 to September 2019, nasopharyngeal/oropharyngeal swabs were prospectively collected from 1842 patients of all ages and tested for 12 common respiratory viruses using a real-time RT-PCR. Phylogenetic and amino acid analyses of the hBoV VP1/VP2 gene/protein were performed. HBoV was identified in 98 (5.3%) patients and was the 6th most prevalent virus after respiratory-syncytial virus (20.4%), influenza A(H1N1)pdm09 (11.1%), A(H3N2) (10.5%), rhinoviruses (9.9%), and adenoviruses (6.8%). Coinfections with other respiratory viruses were detected in 51% of the hBoV-positive patients. Significant differences in the prevalence of hBoVs were found during the different study periods and in patients of different age groups. The detection rate of hBoV was the highest in patients aged 0–4 years (6.9%). In this age group, hBoV was the only identified virus in 9.7%, 5.8%, and 1.1% of the children diagnosed with laryngotracheitis, bronchiolitis, and pneumonia, respectively. Among patients aged ≥5 years, hBoV was detected as a single agent in 2.2% of cases of pneumonia. Phylogenetic analysis showed that all Bulgarian hBoV strains belonged to the hBoV1 genotype. A few amino acid substitutions were identified compared to the St1 prototype strain. This first study amongst an all-age population in Bulgaria showed a significant rate of hBoV detection in some serious respiratory illnesses in early childhood, year-to-year changes in the hBoV prevalence, and low genetic variability in the circulating strains.


Sign in / Sign up

Export Citation Format

Share Document