Mortality Following Isolation of Various Respiratory Viruses in Nursing Home Residents

1999 ◽  
Vol 20 (12) ◽  
pp. 812-815 ◽  
Author(s):  
Paul J. Drinka ◽  
Stefan Gravenstein ◽  
Elizabeth Langer ◽  
Peggy Krause ◽  
Peter Shult

AbstractObjective:To compare mortality following isolation of influenza A to mortality following isolation of other respiratory viruses in a nursing home.Setting:The Wisconsin Veterans Home, a 688-bed skilled nursing facility for veterans and their spouses.Participants:All residents with respiratory viral isolates obtained between 1988 and 1999.Design:Thirty-day mortality was determined following each culture-proven illness.Results:Thirty-day mortality following isolation of viral respiratory pathogens was 4.7% (15/322) for influenza A 5.4% (7/129) for influenza B; 6.1% (3/49) for parainfluenza type 1; 0% (0/26) for parainfluenza types 2,3, and 4; 0% (0/26) for respiratory syncytial virus (RSV); and 1.6% (1/61) for rhinovirus.Conclusions:Mortality following isolation of certain other respiratory viruses may be comparable to that following influenza A (although influenza A mortality might be higher without vaccination and antiviral agents). The use of uniform secretion precautions for all viral respiratory illness deserves consideration in nursing homes.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Shirley Masse ◽  
Lisandru Capai ◽  
Alessandra Falchi

Background. The current study aims to describe the demographical and clinical characteristics of elderly nursing home (NH) residents with acute respiratory infections (ARIs) during four winter seasons (2013/2014–2016/2017), as well as the microbiological etiology of these infections. Methods. Seventeen NHs with at least one ARI resident in Corsica, France, were included. An ARI resident was defined as a resident developing a sudden onset of any constitutional symptoms in addition to any respiratory signs. Nasopharyngeal swabs from ARI residents were screened for the presence of 21 respiratory agents, including seasonal influenza viruses. Results. Of the 107 ARI residents enrolled from NHs, 61 (57%) were positive for at least one of the 21 respiratory pathogens. Forty-one (38.3%) of the 107 ARI residents had influenza: 38 (92%) were positive for influenza A (100% A(H3N2)) and three (8%) for influenza B/Victoria. Axillary fever (≥38°C) was significantly more common among patients infected with influenza A(H3N2). Conclusion. The circulation of seasonal respiratory viruses other than influenza A(H3N2) seems to be sporadic among elderly NH residents. Investigating the circulation of respiratory viruses in nonwinter seasons seems to be important in order to understand better the dynamic of their year-round circulation in NHs.


2019 ◽  
Vol 147 ◽  
Author(s):  
C. A. Minney-Smith ◽  
L. A. Selvey ◽  
A. Levy ◽  
D. W. Smith

Abstract This study compares the frequency and severity of influenza A/H1N1pdm09 (A/H1), influenza A/H3N2 (A/H3) and other respiratory virus infections in hospitalised patients. Data from 17 332 adult hospitalised patients admitted to Sir Charles Gairdner Hospital, Perth, Western Australia, with a respiratory illness between 2012 and 2015 were linked with data containing reverse transcription polymerase chain reaction results for respiratory viruses including A/H1, A/H3, influenza B, human metapneumovirus, respiratory syncytial virus and parainfluenza. Of these, 1753 (10.1%) had test results. Multivariable regression analyses were conducted to compare the viruses for clinical outcomes including ICU admission, ventilation, pneumonia, length of stay and death. Patients with A/H1 were more likely to experience severe outcomes such as ICU admission (OR 2.5, 95% CI 1.2–5.5, P = 0.016), pneumonia (OR 3.0, 95% CI 1.6–5.7, P < 0.001) and lower risk of discharge from hospital (indicating longer lengths of hospitalisation; HR 0.64 95% CI 0.47–0.88, P = 0.005), than patients with A/H3. Patients with a non-influenza respiratory virus were less likely to experience severe clinical outcomes than patients with A/H1, however, had similar likelihood when compared to patients with A/H3. Patients hospitalised with A/H1 had higher odds of severe outcomes than patients with A/H3 or other respiratory viruses. Knowledge of circulating influenza strains is important for healthcare preparedness.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S92-S93
Author(s):  
Jasjit Singh ◽  
Beth Huff ◽  
Delma Nieves ◽  
Wendi Gornick

Abstract Background In a typical winter respiratory season, Influenza A, Influenza B, Respiratory Syncytial Virus (RSV) and human Metapneumovirus (hMPV) infections are common in pediatrics. During the COVID-19 pandemic, we noted a marked decrease in all except for Rhinovirus/Enterovirus at our free-standing quaternary level children’s hospital. Methods We prospectively reviewed all patients with positive testing for viral respiratory pathogens from October 1, 2018 through May 29, 2021. Testing was done by polymerase chain reaction (PCR) (BioFire® FilmArray® Respiratory 2 Panel, UT) and by SARS-CoV-2 PCR testing (Cepheid®, CA). The latter may have been done for pre-procedure or admission screening. We submitted 74 specimens to the California Department Public Health (CDPH) for definitive identification and serotyping analysis. Results The number of Rhinovirus/Enterovirus (RV/EV) infections was compared with Influenza A & B, RSV, and hMPV over the past 3 years. There was a 152% increase in RV/EV from 2018-2019 to 2020-2021 with near absence of other respiratory viruses (Figure 1). In 2020-2021, RV/EV (N=877, 84%) made up a larger percentage of all viral etiologies compared to 2018-2019 (N=348, 11%) (Figure 2). Healthcare acquired infections (HAI) due to respiratory viruses decreased in 2020-2021 compared to both of the prior seasons, though all cases were due to RV/EV (Figure 3). There were no RV/EV associated deaths. Of 74 submitted, CDPH did typing on 24 samples; all were found to be rhinovirus (RV). Figure 1. High-Risk Winter Viral Infections 2019-2021. Figure 2. Distribution of Winter Viral Pathogens 2018-2019 Compared to 2020-2021 Season. Figure 3. Winter Viral Healthcare Associated Infections 2019-2021. Conclusion We experienced a marked increase in RV/EV during COVID precautions, despite a near absence of other common respiratory viruses. This was reflected in both our community data and HAI due to respiratory viruses. There was a marked increase in RV/EV starting with week 18 (Figure 4). We hypothesize this is due to schools’ re-opening. Understanding RV epidemiology and transmission is important, as it may inform return to school and work protocols for the upcoming respiratory viral season. Figure 4. Rhinovirus/Enterovirus by Week for the 2020-2021 Season. Disclosures All Authors: No reported disclosures


Author(s):  
Maria Antonia De Francesco ◽  
Caterina Pollara ◽  
Franco Gargiulo ◽  
Mauro Giacomelli ◽  
Arnaldo Caruso

Different preventive public health measures were adopted globally to limit the spread of SARS-CoV-2, such as hand hygiene and the use of masks, travel restrictions, social distance actions such as the closure of schools and workplaces, case and contact tracing, quarantine and lockdown. These measures, in particular physical distancing and the use of masks, might have contributed to containing the spread of other respiratory viruses that occurs principally by contact and droplet routes. The aim of this study was to evaluate the prevalence of different respiratory viruses (influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses 1, 2, 3 and 4, rhinovirus, adenovirus, metapneumovirus and human coronaviruses) after one year of the pandemic. Furthermore, another aim was to evaluate the possible impact of these non-pharmaceutical measures on the circulation of seasonal respiratory viruses. This single center study was conducted between January 2017–February 2020 (pre-pandemic period) and March 2020–May 2021 (pandemic period). All adults >18 years with respiratory symptoms and tested for respiratory pathogens were included in the study. Nucleic acid detection of all respiratory viruses was performed by multiplex real time PCR. Our results show that the test positivity for influenza A and B, metapneumovirus, parainfluenza virus, respiratory syncytial virus and human coronaviruses decreased with statistical significance during the pandemic. Contrary to this, for adenovirus the decrease was not statistically significant. Conversely, a statistically significant increase was detected for rhinovirus. Coinfections between different respiratory viruses were observed during the pre-pandemic period, while the only coinfection detected during pandemic was between SARS-CoV-2 and rhinovirus. To understand how the preventive strategies against SARS-CoV-2 might alter the transmission dynamics and epidemic patterns of respiratory viruses is fundamental to guide future preventive recommendations.


Author(s):  
Paul Stamm ◽  
Ingo Sagoschen ◽  
Kerstin Weise ◽  
Bodo Plachter ◽  
Thomas Münzel ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has forced the implementation of unprecedented public health measures strategies which might also have a significant impact on the spreading of other viral pathogens such as influenza and Respiratory Syncytial Virus (RSV) . The present study compares the incidences of the most relevant respiratory viruses before and during the SARS-CoV-2 pandemic in emergency room patients. We analyzed the results of in total 14,946 polymerase chain reaction point-of-care tests (POCT-PCR) for Influenza A, Influenza B, RSV and SARS-CoV-2 in an adult and a pediatric emergency room between December 1, 2018 and March 31, 2021. Despite a fivefold increase in the number of tests performed, the positivity rate for Influenza A dropped from 19.32% (165 positives of 854 tests in 2018/19), 14.57% (149 positives of 1023 in 2019–20) to 0% (0 positives of 4915 tests) in 2020/21. In analogy, the positivity rate for Influenza B and RSV dropped from 0.35 to 1.47%, respectively, 10.65–21.08% to 0% for both in 2020/21. The positivity rate for SARS-CoV2 reached 9.74% (110 of 1129 tests performed) during the so-called second wave in December 2020. Compared to the two previous years, seasonal influenza and RSV incidence was eliminated during the COVID-19 pandemic. Corona-related measures and human behavior patterns could lead to a significant decline or even complete suppression of other respiratory viruses such as influenza and RSV.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Soya S. Sam ◽  
Angela M. Caliendo ◽  
Jessica Ingersoll ◽  
Deborah Abdul-Ali ◽  
Charles E. Hill ◽  
...  

ABSTRACT Accurate and rapid diagnosis is needed for timely intervention and clinical management of acute respiratory infections. This study evaluated performance characteristics of the Panther Fusion assay for the detection of influenza A virus (Flu A), influenza B virus (Flu B), respiratory syncytial virus (RSV), parainfluenza viruses 1 to 3 (Para 1 to 3), human metapneumovirus (hMPV), rhinovirus (RV), and adenovirus (Adeno) targets in comparison to those of the eSensor and Lyra assays using 395 nasopharyngeal (NP) and 104 lower respiratory tract (LRT) specimens. Based on the consensus positive result established (positive result in 2 of the 3 assays), the NP specimens for the Fusion and eSensor assays had 100% positive percent agreement (PPA) for all the analytes and the Lyra assays had 100% PPA for Flu A and Adeno analytes. A 100% negative percent agreement (NPA) was observed for all the Lyra analytes, whereas those for the Fusion targets ranged from 98.4 to 100% and those for the eSensor ranged from 99.4 to 100% for all the analytes except RV. For the LRT specimens, Fusion had 100% PPA and 100% NPA for all the targets except hMPV. There was a 100% PPA for eSensor analytes; the NPA ranged from 98 to 100%, except for RV. For the Lyra assays, the PPA ranged between 50 and 100%, while the NPA was 100% for all the targets except Adeno. The Fusion assay performed similarly to the eSensor assay for majority of the targets tested and provides laboratories with a fully automated random-access system to test for a broad array of viral respiratory pathogens.


2021 ◽  
Vol 16 ◽  
Author(s):  
Enas Al-Zayadneh ◽  
Dina Mohammad Abu Assab ◽  
Esraa Adeeb Arabiat ◽  
Montaha Al-Iede ◽  
Hanin Ahmad Kayed ◽  
...  

Background: Acute lower respiratory infection (ALRI) is a major cause of morbidity and mortality worldwide in young children and is predominately caused by viral respiratory pathogens. This study aims to identify the viral etiologies of acute ALRI in hospitalized children in Jordan University Hospital and compare the clinical characteristics of influenza virus infection with other respiratory viruses. Methods: a retrospective viral surveillance study that included 152 children below 15 years of age admitted with ALRI from December 2018  through April 2019. We recorded results of real-time reverse transcriptase-polymerase chain reaction (RT- PCR ) for common respiratory viruses. Clinical and demographic information of the study population was collected from patients’ electronic medical records. Results: 152 were identified with a median age of 1 year (mean was 2.1 years). Ninety-five patients (62.5%) were males. One or more viral respiratory pathogens were detected in 145 (95.3%) children. Respiratory syncytial virus was the most commonly detected virus in 68 patients (44.8%). Influenza virus was detected in 25 (16.4%). Children with influenza infection had more fever and less leukocyte count compared to children infected with other viruses. The severity of the ALRI correlated significantly with several factors, including age less than 6 months and the presence of neuromuscular disease (p<0.05). Conclusion: Viral detection was common among children admitted with viral ALRI. Viruses, including influenza, are recognized as major contributors to the morbidity associated with ALRI. More attention is needed on strategies for the prevention and detection of viral ALRI in developing countries.


2000 ◽  
Vol 21 (11) ◽  
pp. 700-704 ◽  
Author(s):  
Christine Lee ◽  
Mark Loeb ◽  
Anne Phillips ◽  
Judy Nesbitt ◽  
Karen Smith ◽  
...  

AbstractObjective:To describe the use of zanamivir during an influenza A outbreak.Population:Residents of a 176-bed long-term-care facility for the elderly in Newmarket, Ontario, Canada, 90% of whom received influenza vaccine in the fall of 1998.Outbreak:When respiratory illness due to influenza A was confirmed, infection control measures and amantadine prophylaxis were initiated. Despite these measures, transmission of influenza A continued.Intervention:Zanamivir inhalations, 10 mg daily for prophylaxis and 10 mg twice daily for treatment of influenza.Results:There were 13 definite and 66 probable outbreak-associated cases of influenza A. Twelve (15%) cases developed pneumonia, 7 (9%) were hospitalized, and 2 (2.6%) died. All 12 culture-positive cases yielded influenza A/Sydney/H3N2/05/97-like virus, a 1998/99 vaccine component. The three isolates obtained prior to the initiation of amantadine were amantadine-susceptible; all nine obtained after prophylaxis was instituted were amantadine-resistant. One hundred twenty-nine (92%) of 140 residents who were offered zanamivir accepted it and were able to attempt inhalations. Of these 129, 78% (100) had no difficulty in complying with inhalations. Difficulty with inhalations was associated with decreased functional and mental status. Fifteen (58%) of 26 residents fully dependent in activities of daily living had difficulty compared to 14 (14%) of 100 others (P<.001). Twenty-two (45%) of 49 residents not oriented to person, place, or time had difficulty compared to 7 (10%) of 77 others (P<001). In the 2 weeks after zanamivir prophylaxis, only 2 new cases of respiratory illness occurred, neither confirmed as influenza. No side effects were identified in 128 zanamivir-treated residents.Conclusion:A minority of nursing home residents have difficulty following instructions for zanamivir inhalations. Zanamivir was well tolerated, and its use was temporally associated with termination of an outbreak that amantadine had failed to control.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yueling Zhu ◽  
Wei Li ◽  
Binbin Yang ◽  
Ruiying Qian ◽  
Fang Wu ◽  
...  

Abstract Background To investigate the impact of protective measures and isolation on respiratory tract infections in children during the COVID-19 outbreak. Methods We extracted data on outpatient visits and respiratory infection visits, and tests of respiratory viruses (adenovirus (ADV), influenza A (FluA), influenza B (FluB) and respiratory syncytial virus (RSV)) from electronic healthcare records in Children’s Hospital, Zhejiang University School of Medicine during the COVID-19 outbreak (January–April, 2020), compared with those in 2018 and 2019 during the same periods. Results We found that outpatient visits in January, 2020 was comparable with those in 2018 and 2019, but decreased by 59.9% (288,003 vs. 717,983) and 57.4% (288,003 vs. 676,704), respectively during the period of February-April, 2020, as compared with the same periods in 2018 and 2019. The total number of respiratory tract infections from January to April 2020 decreased by 65.7% (119,532 vs.348,762) and 59.0% (119,532 vs.291,557), respectively compared with the same periods in 2018 and 2019. The proportion of respiratory tract infections during the outbreak also dropped compared with the same periods in 2018 and 2019 (P<0.001). We also found significantly decreased number of completed tests for respiratory viruses and positive cases of ADV, FluA, FluB, and RSV during February-April, 2020. Conclusions In this study, we found that outpatient visits and respiratory tract infections in children significantly decreased during COVID-19 outbreak. Adequate protective measures and isolation in children may help to prevent respiratory virus infections in children.


2020 ◽  
Author(s):  
Kyoung Ho Roh ◽  
Yu Kyung Kim ◽  
Shin-Woo Kim ◽  
Eun-Rim Kang ◽  
Yong-Jin Yang ◽  
...  

AbstractDetection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in upper and lower respiratory specimens and coinfection with other respiratory pathogens in patients with coronavirus disease 2019 (COVID-19) were investigated. From the study subjects (N = 258) retrospectively enrolled when confirmed as SARS-CoV-2 positive, nasopharyngeal (NPS), oropharyngeal swabs (OPS), and sputum specimens were restored for retesting SARS-CoV-2 and detecting respiratory pathogens. Majority of the study subjects (95.7%, N = 247) were confirmed as SARS-CoV-2 positive using NPS/OPS specimens, suggesting that the upper respiratory specimen is most valuable in detecting SARS-CoV-2. Coinfection rates in COVID-19 patients (N = 258) with respiratory pathogens were 9.7% (N = 25); 8.5% (N = 22) respiratory viruses and 1.2% (N = 3) Mycoplasma pneumoniae, an atypical bacterium. Of the respiratory virus coinfection cases (N = 22), 20 (90.9%) were co-infected with a single respiratory virus and 2 (0.8%) (metapneumovirus/adenovirus and rhinovirus/bocavirus 1/2/3/4) with two viruses. Respiratory viruses in single viral coinfection cases with SARS-CoV-2 were as follows: non-SARS-CoV-2 coronaviruses (229E, NL63, and OC43, N = 5, 1.9%), rhinovirus (N = 4, 1.6%), metapneumovirus (N = 3, 1.2%), influenza A (N = 3, 1.2%), respiratory syncytial virus A and B (N = 3, 1.2%), and adenovirus (N = 2, 0.8%). No mixed coinfections with respiratory viruses and M. pneumoniae were found. In conclusion, the diagnostic value of utilizing NPS/OPS specimen is excellent, and, as the first report in Korea, coinfection with respiratory pathogens were detected at a rate of 9.7% in patients with COVID-19.


Sign in / Sign up

Export Citation Format

Share Document