scholarly journals Fas-Related Apoptosis of Peritoneal Fluid Macrophages in Endometriosis Patients: Understanding the Disease

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Marek Gogacz ◽  
Krzysztof Gałczyński ◽  
Małgorzata Wojtaś ◽  
Izabela Winkler ◽  
Aneta Adamiak ◽  
...  

Recent studies of the peritoneal cavity environment in endometriosis demonstrate quantitative and qualitative changes in the cells responsible for cell-mediated immunity. Such changes may have led to disturbances in the surveillance, recognition, and destruction of misplaced endometrial cells and might have, in fact, brought about the disease. The aim of the study was to assess CD95 (Fas) expression on (activated) peritoneal fluid (PF) macrophages, as well as to ascertain soluble Fas (sFas) concentration in the PF of endometriosis patients, as compared to the nonendometriotic group. The concentration of leukocytes in the PF, the percentage of cells expressing CD45+/CD14+, and the percentage of PF macrophages expressing the HLA-DR antigen were significantly higher in patients with stages I and II endometriosis. The percentage of Fas- (CD95+-) expressing macrophages was significantly higher in all stages of the disease, in comparison with controls. Moreover, the concentration of sFas in the PF of patients with moderate and severe endometriosis was significantly higher, as compared to the reference group. The high number of immune cells in PF in early stage endometriosis and their increased susceptibility to apoptosis confirm the role of the impaired peritoneal environment and immune defects in the development and progression of the disease.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2229
Author(s):  
Marta Smycz-Kubańska ◽  
Zdzisława Kondera-Anasz ◽  
Justyna Sikora ◽  
Dominika Wendlocha ◽  
Patrycja Królewska-Daszczyńska ◽  
...  

Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterine cavity, primarily into the peritoneal cavity. It is known as a complex, chronic inflammatory disease and it is strongly associated with immune dysregulation. Various soluble mediators of the immune and inflammatory responses, including chemokines, play an important role in these processes. The aim of the study was to understand the role of the chemokines MCP-1, MCP-2, MCP-3, MCP-4, MIP-1 α, MIP-1β, eotaxin 2, eotaxin 3, ENA-78, and fractalkine in the development of endometriosis through their assessment in the peritoneal fluid of women with endometriosis. The study group included 58 women with endometriosis who were diagnosed during laparoscopy and then confirmed by histopathology. In 15 women from the reference group, laparoscopic examination demonstrated a normal status of the pelvic organs without any evidence of endometriosis nor inflammation in the peritoneal cavity. The peritoneal fluid of women with endometriosis and of women from the reference group were examined. To determine the concentration of the studied chemokines, enzyme immunoassays for Luminex® platforms were used. In the peritoneal fluid of women with endometriosis, a statistically significant increase in the concentration of MIP-1β, eotaxin 2, eotaxin 3, ENA-78, and fractalkine and a decrease in the concentration of MCP-1, MCP-2, MCP-3, MCP-4, and MIP-1α were observed compared to the reference group. The concentration of these cytokines depended on the severity of the disease. Changes in the concentration of the studied chemokines in the peritoneal fluid of women with endometriosis suggest their participation in the pathogenesis of the disease. The differences in chemokines concentration observed in different stages of endometriosis may be associated with the presence of inflammation in the peritoneal cavity at each step of disease development.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1292
Author(s):  
Joanna Janusz ◽  
Aleksandra Janusz ◽  
Zdzisława Kondera-Anasz ◽  
Justyna Sikora ◽  
Marta Smycz-Kubańska ◽  
...  

Angiogenesis is considered to be one of the key stages in the development of endometriosis. Recent studies indicate that bone morphogenetic proteins (BMPs) and their receptors (BMPR) may play an important role in the angiogenesis process. In the literature, however, there is a lack of publications concerning binding BMPs and their receptors with the pathogenesis of endometriosis. The aim of the study was to determine the role of soluble bone morphogenetic proteins, BMP-2 and BMP-7, and their receptors, ALK-1 and BMPR2, in the process of the formation and development of endometriosis. Peritoneal fluid was collected in the proliferative phase of the menstrual cycle, from 80 women aged 21–49 years (mean age 31.3 ± 6.7 years) undergoing laparoscopy to determine the causes of primary infertility. The study involved 60 women in the I, II, III, and IV stages of the disease. The reference group consisted of 20 women who did not have endometriosis or other lesions in the pelvic area. The concentration in the peritoneal fluid of women with endometriosis was compared to the concentration of this parameter in the reference group, and a statistically significant reduction in the concentration of the BMP-2 molecule was found, as well as increasing concentrations of BMP-7, ALK-1, and BMPR2. BMP-2 and BMP-7 and their soluble receptors, ALK-1 and BMPR2, are involved in the formation of endometriosis. The changes in the concentrations of most of the tested parameters demonstrated in the study, especially in the early stages of the disease, may indicate the more effective formation of new blood vessels in this period.


2015 ◽  
Vol 10 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Matias E. Valsecchi ◽  
Gerrit Kimmey ◽  
Arvinder Bir ◽  
Damian Silbermins

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3314
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Kisluk ◽  
Karolina Pietrowska ◽  
Joanna Godzien ◽  
Miroslaw Kozlowski ◽  
...  

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.


Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


Sign in / Sign up

Export Citation Format

Share Document