scholarly journals An Injectable Composite Gelatin Hydrogel with pH Response Properties

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Baoguo Chen ◽  
Xiaohong Hu

On account of minimally invasive procedure and of filling irregular defects of tissues, injectable hydrogels are increasingly attractive in biomedical fields. However, traditional hydrogel formed by simple physical interaction or in situ crosslinking had inevitably some drawbacks such as low mechanical strength and lack of multifunctional properties. Though many investigations had successfully modified traditional injectable hydrogel to obtain both mechanical and functional properties, an acetalated β-cyclodextrin (Ac-β-CD) nanoparticle composite injectable hydrogel designed in the research was another effective and efficient choice to solve the drawbacks. First of all, gelatin derivative (G-AA) and Ac-β-CD were synthesized to prepare hydrogel and nanoparticle, respectively. In order to ensure good compatibility between nanoparticle and macromonomer and provide crosslink points between nanoparticle and macromonomer, G-AA was simultaneously functionalized onto the surface of Ac-β-CD nanoparticle during the fabrication of Ac-β-CD nanoparticle using one-step method. Finally, injectable composite hydrogel was obtained by photoinitiated polymerization in situ. Hydrogel properties like gelation time and swelling ratio were investigated. The viscoelastic behavior of hydrogels confirmed that typical characteristics of crosslinked elastomer for all hydrogel and nanoparticle in hydrogel could improve the mechanical property of hydrogel. Moreover, the transparency with time had verified obvious acid-response properties of hydrogels.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 567
Author(s):  
Ivona Tomić ◽  
Sandra Miočić ◽  
Ivan Pepić ◽  
Dubravka Šimić ◽  
Jelena Filipović-Grčić

Acne vulgaris is a common, multifactorial, inflammatory skin disease affecting the pilosebaceous unit. Topical therapy is the first choice in the treatment of mild to moderate acne, and azelaic acid (AZA) is one of the most commonly used drugs. The aim of this study was to evaluate the safety and efficacy of a low-dose azelaic acid nanocrystal (AZA-NC) hydrogel in the treatment of mild to moderate facial acne. The study was designed as a double-blind, randomized controlled trial. Patients were randomized to treatment with AZA-NC hydrogel, 10%, or AZA cream, 20%, administered in quantities of approximately 1 g twice daily for 8 weeks. Efficacy of therapy was measured by the number of lesions and safety by the frequency and severity of adverse events. At week 8, the success rate of treatment with AZA-NC hydrogel, 10%, was 36.51% (p < 0.001) versus 30.37% (p < 0.001) with AZA cream. At week 8, treatment with AZA-NC hydrogel, 10%, resulted in a significant reduction in total inflammatory lesions from baseline of 39.15% (p < 0.001) versus 33.76% (p < 0.001) with AZA cream, and a reduction in non-inflammatory lesions from baseline of 34.58% (p < 0.001) versus 27.96% (p < 0.001) with AZA cream, respectively. The adverse event rate was low and mostly mild.


Author(s):  
Vazir Ashfaq Ahmed ◽  
Divakar Goli

Objective: The goal of this study was to develop and characterize an ion-activated in situ gel-forming brimonidine tartrate, solution eye drops containing xanthan gum as a mucoadhesive polymer.Method: Sol-gel formulation was prepared using gellan gum as an ion-activated gel-forming polymer, xanthan gum as mucoadhesive agent, and hydroxypropyl methyl cellulose (HPMC E50LV) as release retardant polymer. Phenylethyl alcohol is used as preservatives in borate buffer. The 23 factorial design was employed to optimize the formulation considering the concentration of gelrite, xanthan gum and HPMC as independent variables, gelation time, gel strength, and mucoadhesive force (N). Gelation time , gel strength, mucoadhesive force (N), viscosity (cP) and in vitro percentage drug release were chosen as dependent variables. The formulation was characteristics for pH, clarity, isotonicity, sterility, rheological behavior, and in vitro drug release, ocular irritation, and ocular visualization.Result: Based on desirability index of responses, the formulation containing a concentration of gelrite (0.4%), xanthan gum (0.21%), and HPMC (HPMC E50 (0.24%) was found to be the optimized formulation concentration developed by 23 factorial design. The solution eye drops resulted in an in situ phase change to gel-state when mixed with simulated tear fluid. The gel formation was also confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 88% of drug released in 10 h, thus increased the residence time of the drug.Conclusion: An in situ gelling system is a valuable alternative to the conventional system with added benefits of sustained drug release which may ultimately result in improved patient compliance.


Author(s):  
Sanket Kumar ◽  
Mahesh Singh ◽  
Babulal Patel

Peptic ulcer, it is the most common type of stomach disease, according to the American Gastroenterology Association. “We know that ulcers occur because there has been a disruption in the balance of factors that injure the digestive tract and those factors that protect it from injury,” The present investigation deal with the formulation, optimization and evaluation of sodium alginate based in situ gel of ranitidine hydrochloride (R-HCl) in ulcer treatment. The in-situ formulation are homogenous liquid when administration orally and become gel at the contact site. The evaluation of the formulation is dependent upon accurate results obtained by analytical method used during the study. Accurate results require the use of standard and a calibration procedure. Hence, standard plots of Ranitidine hydrochloride were prepared in (0.1N HCL, pH 1.2) solutions. Two, sodium alginate and calcium carbonate used as a polymer and cross-linking agent respectively in the formulation of in-situ gel. From the IR studies it may be concluded that the drug and carriers used undergo physical interaction there is no chemical change, and thus the gelling agent, cross-linking agent and other excipient is suitable for formulation of in-situ gel of ranitidine hydrochloride. Indicate that the formulation, DKF9 which was prepared by the Sodium alginate (2 gm) with Ranitidine Hydrochloride showed minimum drug release (sustained drug release) after 8 hrs. It can be concluded that the In-situ gel was beneficial for delivering the drug which needs sustained release to achieve the slow action. Keywords: In-situ gel, Peptic Ulcer, Ranitidine Hydrochloride (R-HCl), Sodium alginate.


In-situ Polypyrrole (PPy) coating was performed on the surface of LixFePO4 /C (x=0.95 to 1.20) particles using iron (III) tosylate as oxidizer. The composite material LixFePO4 /C (x=0.95 to 1.20) was synthesized by two step method. FePO4 /polyaniline particles were first synthesized by chemical precipitation and were further heat treated with lithium acetate and sucrose under reduced atmosphere. XRD pattern confirms that Li+ addition to LiFePO4 has increased interplaner spacing and of the unit cell size. Impurity phase appears with x=1.15 and 1.20 which further disappears after polymer coating. After polymerization process the XRD pattern shows Li0.05FePO4 and LiFePO4 phases and both the phases have same electrochemical behavior. Morphology of the LixFePO4 /C and LixFePO4 /C-PPy was studied by using FE-SEM and it was found that particles are spherical with size range below 200nm. Transmission Electron Microscope (TEM) also confirms that LixFePO4 /C isolated particles were well encapsulated within the polymer matrix


2014 ◽  
Vol 108 ◽  
pp. 26-33 ◽  
Author(s):  
Zesheng Lv ◽  
Longlong Chang ◽  
Xingwen Long ◽  
Jianping Liu ◽  
Yuzhang Xiang ◽  
...  

2019 ◽  
Author(s):  
A. AlSofi ◽  
J. Wang ◽  
H. AlHashim ◽  
Z. Kaidar
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoling Yao ◽  
Chungui Du ◽  
Yating Hua ◽  
Jingjing Zhang ◽  
Rui Peng ◽  
...  

In recent years, bamboo has been widely used for building materials and household goods. However, bamboo is flammable, so a flame-retardant treatment for bamboo is urgently needed. In this work, nano MgAl-layered double hydroxide (MgAl-LDH) coated on bamboo, which was called MgAl-LB, was synthesized by an in situ one-step method. To determine the optimal in situ time, the effects of different reaction times on LDH growth on the bamboo surface and the flame retardancy of the MgAl-LBs were investigated. The SEM observations show that LDH growth on the surface of bamboo was basically saturated when the in situ reaction time was 24 h. Abrasion experiments show that MgAl-LDH coating has good abrasion resistance. The fire performance of the MgAl-LBs was evaluated by cone calorimeter tests, which indicated that the THR and TSP of the MgAl-LBs were significantly lower than those of untreated bamboo. Taking into account the energy consumption problem, determining the reaction time of 24 h is the optimal reaction time. Compared with untreated bamboo, the THR and TSP of MgAl-LB prepared at 24 h decreased by 33.3% and 88.9%, respectively.


2019 ◽  
Vol 47 (1) ◽  
pp. 3961-3975 ◽  
Author(s):  
Weipeng Wei ◽  
Cui Meng ◽  
Yuhe Wang ◽  
Yongsheng Huang ◽  
Wenbin Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document