scholarly journals Evaluation of Energy Production and Energy Yield Assessment Based on Feasibility, Design, and Execution of 3 × 50 MW Grid-Connected Solar PV Pilot Project in Nooriabad

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Irfan Jamil ◽  
Jinquan Zhao ◽  
Li Zhang ◽  
Rehan Jamil ◽  
Syed Furqan Rafique

The installation of 3 × 50 MW (150 MW DC) large utility scale solar power plant is ground based using ventilated polycrystalline module technology with fixed tilt angle of 28° in a 750-acre land, and the site is located about 115 km northeast of Karachi, Pakistan, near the town of ThanoBula Khan, Nooriabad, Sindh. This plant will be connected to the utility distribution system through a national grid of 220 kV outgoing double-loop transmission line. The 3 × 50 MW solar PV will be one of the largest tied grid-connected power projects as the site is receiving a rich average solar radiation of 158.7 kW/h/m2/month and an annual average temperature of about of 27°C. The analysis highlights the preliminary design of the case project such as feasibility study and PV solar design aspects and is based on a simulation study of energy yield assessment which has all been illustrated. The annual energy production and energy yield assessment values of the plant are computed using the PVSYST software. The assumptions and results of energy losses, annual performance ratio (PR) 74.73%, annual capacity factor 17.7%, and annual energy production of the plant at 232,518 MWh/year are recorded accordingly. Bear in mind that reference recorded data indicates a good agreement over the performance of the proposed PV power plant.

2020 ◽  
Vol 26 (4) ◽  
pp. 21-32
Author(s):  
Nibras Mahmood Obaid ◽  
Emad T. Hashim ◽  
Naseer K. Kasim

The performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 1986.4kWh/m2. The average power losses per day of array, system losses and overall losses were (1.38, 0.15, 1.53) kWh/kWp/day respectively. The average capacity factor and performance ratio per year were 18.4% and 75.5% respectively. These results highlighted the performance analyses of this PV solar system located in Baghdad city. The performance can be considered as good and significant comparing with other world PV solar stations.  


2020 ◽  
Vol 8 (5) ◽  
pp. 1703-1714 ◽  

Installation of solar PV arrays at utility scale is gaining popularity nowadays because of the significant reduction in the cost of components as well as the global push towards clean energy. Solar PV plants along with Parabolic Trough Collector Solar thermal plants has the highest potential among the available Renewable Energy (RE) technologies existing in the world. The objective of this paper is to optimize the performance of commercial Solar PV and PTC power plant for a potential location and hence to arrive on a most feasible configuration for the site. A representative site located in the Abudhabi region of UAE considered for the study. This paper also details on the annual performance of the proposed plant along with its technical aspects. PVSYST 6.7.7 and SAM software is used to design the optimal size and its specifications of a 100MW PV grid connected system at Abu Dhabi (UAE) region. The design and arrangements of the system verified using simulation results. The annual energy generated from the designed utility-scale solar PV plant from PVSYST 6.7.7 calculated as 161198MWh/year with a performance ratio (PR) of 74.8% per year where as for PTC it has calculated as 157152MWh/year by using SAM. The STC (Standard Testing Condition) for the specification of PV modules are normalized operating conditions when testing the module. Design parameters such as module orientation, array yield, reference yield, final yield, global horizontal irradiation (GHI), and ambient temperature and loss factors evaluated. To evaluate the economic feasibility of proposed plant, the levelized cost of electricity (LCOE) is determined as $0.04404/kwh for Solar PV and as $0.01533/kwh for PTC, which is used to calculate lifecycle cost and energy production


Author(s):  
Farbod Esmaeilion ◽  
Abolfazl Ahmadi ◽  
Aryan Esmaeilion ◽  
M.A. Ehyaei

Objectives: The purpose of this study is to analyze the performance of a one-megawatt photovoltaic power plant in Arak-Iran, according to IEC-61724 standard, using data recorded over a year. The photovoltaic plant of Arak is located at coordinates 34.0954° N and 49.7013° E. This power plant is the first-megawatt photovoltaic power plant in Iran which two types of modules are used and it was constructed by the New Energy Agency and the Power Research Center under the supervision of the Ministry of Energy in 2016. In this plant, a combination of monocrystal and polycrystalline modules is used, and the annual output is 1756 MWh. Methods: The combination of modules is based on the 1920 modules of 250 W of polycrystalline and 260 modules of 260 W of monocrystal in the construction of the power plant. There are also 4 inverters and a 1250 KVA dry power transformer. The plant has suitable productivity, with a performance ratio equal to 0.8 and a final yield of 4.57. Results: Ultimately the PV plant is simulated by PVsyst and the results are compared with monitored records which indicated the appropriate accuracy of the collected data. The calculated performance ratio for the power plant by PVsyst is 81.2% and has a 1.5% difference with the monitored totals. The energy supplied during one year by the power plant is 1756 MWh, whereas the prediction of annual energy yield that entered to the grid is equal to 1757 MWh.


2019 ◽  
Vol 25 ◽  
pp. 1-19
Author(s):  
Sindri Þrastarson ◽  
Björn Marteinsson ◽  
Hrund Ólöf Andradóttir

The efficiency and production costs of solar panels have improved dramatically in the past decades. The Nordic countries have taken steps in instigating photovoltaic (PV) systems into energy production despite limited incoming solar radiation in winter. IKEA installed the first major PV system in Iceland with 65 solar panels with 17.55 kW of production capacity in the summer of 2018. The purpose of this research was to assess the feasibility of PV systems in Reykjavík based on solar irradiation measurements, energy production of a PV array located at IKEA and theory. Results suggests that net irradiation in Reykjavík (64°N, 21° V) was on average about 780 kWh/m2 per year (based on years 2008-2018), highest 140 kWh/m2 in July and lowest 1,8 kWh/m2 in December. Maximum annual solar power is generated by solar panels installed at a 40° fixed angle. PV panels at a lower angle produce more energy during summer. Conversely, higher angles maximize production in the winter. The PV system produced over 12 MWh over a one-year period and annual specific yield was 712 kWh/kW and performance ratio 69% which is about 10% lower than in similar studies in cold climates. That difference can be explained by snow cover, shadow falling on the panels and panels not being fixed at optimal slope. Payback time for the IKEA PV system was calculated 24 years which considers low electricity prices in Reykjavik and unforeseen high installation costs. Solar energy could be a feasible option in the future if production- and installation costs were to decrease and if the solar PV output could be sold to the electric grid in Iceland.


Author(s):  
Shiva Pujan Jaiswal ◽  
Vivek Shrivastava ◽  
Shashank Singh

2021 ◽  
Vol 1 (2) ◽  
pp. 21-29
Author(s):  
Sahana L. ◽  
Naveen Kumaar ◽  
Hans Peter Waldl ◽  
Prasun Kumar Das ◽  
Karthik Ramanathan ◽  
...  

Across the world, the geographical conditions are varied, and the characteristics of dust depend on the local environmental conditions. The solar power generators must incorporate the soiling losses in their estimation for power output and therefore a methodology was developed to estimate the soiling correction factor. After extensive research, a comprehensive review was presented on the effect of soiling on performance of PV plants along with case studies of soiling experiments around the world. A soiling experiment was designed to develop the soiling correction factor. A methodology to calculate the soiling correction factor, which can be implemented in any location, was developed by analyzing the data from the soiling experiment. The effect of rainfall, humidity and wind on soiling was analyzed and documented. The performance of one 20 kWp PV plant was monitored to study the effect of weather-related parameters on the performance. The soiling correction factor varied from -1.36% to 3.67% during the period between June 2018 and June 2019 in Chennai. It was observed that the average PV conversion efficiency of the 20-kW plant was 11.75% and the average PR was 75%. It was observed that the correlation between module temperature and DC power; between humidity and DC power; between GTI and DC power varied every month. The soiling factor developed could be incorporated into the short-term day ahead solar forecasting model. The developed methodology could be applied at the any large-scale solar power plant around the world for yield assessment, designing as well as operational forecasting purposes.


2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Muhammad Tamoor ◽  
Abdul Rauf Bhatti ◽  
Muhammad Farhan ◽  
Sajjad Miran ◽  
Faakhar Raza ◽  
...  

With the depletion of traditional fossil fuels, their disastrous impact on the environment and rising costs, renewable energy sources such as photovoltaic (PV) energy are rapidly emerging as sustainable and clean sources of power generation. The performance of photovoltaic systems is based on different factors such as the type of photovoltaic modules, irradiation potential and geographic location. In this research, PVsyst simulation software is used to design and simulate a hybrid photovoltaic system used to operate energy-efficient street lightning system. The simulation is performed to analyze the monthly/annual energy generated (kWh) by the hybrid system and specific power production (kWh/KWp). Additionally, various PV system losses are also investigated. The hybrid PV system has 4 parallel strings, and each string has 13 series-connected (mono crystalline 400 W Canadian Solar) PV modules. The energy storage system consists of 16 Narada (AcmeG 12 V 200) batteries with a nominal capacity of 1600 Ah. The simulation results show that the total annual energy production and specific energy production, were calculated to be 26.68 MWh/year and 1283 kWh/kWp/year, respectively. Simulation results also show the maximum energy injected into the utility grid in the month of June (1.814 MWh) and the minimum energy injected into the utility grid in the month of January (0.848 MWh). The battery cycle state of wear is 84.8%, and the static state of wear is 91.7%. Performance ratio (PR) analysis shows that the highest performance ratio of the hybrid system was 68.2% in December, the lowest performance ratio was 62.7% in May and the annual average performance ratio of a hybrid PV system is 65.57%. After identifying the major source of energy losses, the detailed losses for the whole year were computed and shown by the loss diagrams. To evaluate the cost effectiveness of the proposed system, a simple payback period calculation was performed.


2020 ◽  
Vol 12 (21) ◽  
pp. 9227
Author(s):  
Humberto Vidal ◽  
Marco Rivera ◽  
Patrick Wheeler ◽  
Nicolás Vicencio

Solar PV structures for locations at high latitudes in the Northern and Southern Hemispheres are increasingly in the spotlight. The work reported in this paper analyses the behaviour of a grid-connected 8.2 kWp photovoltaic system to either feed on-site electrical loads (a public institution, Corporación Nacional Forestal (CONAF), located 5.5 km south of Punta Arenas, lat. 53° S) or to feed into the electrical grid when the photovoltaic system generation is higher than the on-site load demand. The system simulation uses the PVSyst software with Meteonorm derived and measured climate information sets (ambient temperature, solar irradiation and wind speed). The agreement between the simulated and measured energy yield is analysed including the evaluation of the optimal generation energy of the PV array, the energy that is fed into the network, the performance ratio, and the normalised energy generation per installed kWp. The PV system considered in this work generates 7005.3 kWh/year, out of which only 6778 kWh/year are injected into the grid. The measured annual performance ratio is around 89%. The normalised productions of the inverter output or final system yield, i.e., useful energy, is 3.6 kWh/kWp/day. The measured annual average capacity factor obtained from this study is 15.1%. These performance parameters will encourage greater use of photovoltaic technology in the Chilean Patagonia region.


2020 ◽  
Vol 12 (15) ◽  
pp. 6283
Author(s):  
Alfeus Sunarso ◽  
Kunhali Ibrahim-Bathis ◽  
Sakti A. Murti ◽  
Irwan Budiarto ◽  
Harold S. Ruiz

This paper presents a technical and economic feasibility assessment of utility-scale solar photovoltaic (PV) plants in the West Kalimantan Province of Borneo, which is essential for boosting the development of solar PV plants in Indonesia. The assessment was performed based on a previously developed geographical information systems (GIS) package that integrates satellite-derived data of solar irradiation with locally obtained data such as land usage, topography, road lines, and an electrical network. For the evaluation of the technical and economic feasibility, annual energy production and electrical cost were calculated using an analysis tool that was integrated into a GIS package. The results show that more than 93% of the exploitable land that covers the area of 49,859 km2 is available for the development of solar PV plants, with an annual energy production higher than 180 GWh/km2 and an electricity cost lower than 0.05 USD/kWh, indicating the attractiveness of utility-scale solar PV plant development in West Kalimantan Province. A further detailed assessment of optimal sites shows that the selected sites are technically and economically feasible for the development of utility-scale solar PV plants. The approaches and results of this research should be valuable for energy planners, developers, and policy makers to set the strategies for promoting the development of utility-scale solar PV plants in pro of the sustainable development of Indonesia.


Sign in / Sign up

Export Citation Format

Share Document