scholarly journals Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yuanfa Wang ◽  
Zunchao Li ◽  
Lichen Feng ◽  
Chuang Zheng ◽  
Wenhao Zhang

An automatic detection system for distinguishing normal, ictal, and interictal electroencephalogram (EEG) signals is of great help in clinical practice. This paper presents a three-class classification system based on discrete wavelet transform (DWT) and the nonlinear sparse extreme learning machine (SELM) for epilepsy and epileptic seizure detection. Three-level lifting DWT using Daubechies order 4 wavelet is introduced to decompose EEG signals into delta, theta, alpha, and beta subbands. Considering classification accuracy and computational complexity, the maximum and standard deviation values of each subband are computed to create an eight-dimensional feature vector. After comparing five multiclass SELM strategies, the one-against-one strategy with the highest accuracy is chosen for the three-class classification system. The performance of the designed three-class classification system is tested with publicly available epilepsy dataset. The results show that the system achieves high enough classification accuracy by combining the SELM and DWT and reduces training and testing time by decreasing computational complexity and feature dimension. With excellent classification performance and low computation complexity, this three-class classification system can be utilized for practical epileptic EEG detection, and it offers great potentials for portable automatic epilepsy and seizure detection system in the future hardware implementation.

2006 ◽  
Vol 16 (01) ◽  
pp. 29-38 ◽  
Author(s):  
NAN-YING LIANG ◽  
PARAMASIVAN SARATCHANDRAN ◽  
GUANG-BIN HUANG ◽  
NARASIMHAN SUNDARARAJAN

In this paper, a recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM) is used to classify five mental tasks from different subjects using electroencephalogram (EEG) signals available from a well-known database. Performance of ELM is compared in terms of training time and classification accuracy with a Backpropagation Neural Network (BPNN) classifier and also Support Vector Machines (SVMs). For SVMs, the comparisons have been made for both 1-against-1 and 1-against-all methods. Results show that ELM needs an order of magnitude less training time compared with SVMs and two orders of magnitude less compared with BPNN. The classification accuracy of ELM is similar to that of SVMs and BPNN. The study showed that smoothing of the classifiers' outputs can significantly improve their classification accuracies.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Derya Avci ◽  
Akif Dogantekin

Parkinson disease is a major public health problem all around the world. This paper proposes an expert disease diagnosis system for Parkinson disease based on genetic algorithm- (GA-) wavelet kernel- (WK-) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by the ELM learning method. The Parkinson disease datasets are obtained from the UCI machine learning database. In wavelet kernel-Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using a genetic algorithm (GA). The performance of the proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specificity analysis, and ROC curves. The calculated highest classification accuracy of the proposed GA-WK-ELM method is found as 96.81%.


2018 ◽  
Vol 277 ◽  
pp. 218-227 ◽  
Author(s):  
He Huang ◽  
He Ma ◽  
Han JW van Triest ◽  
Yinghua Wei ◽  
Wei Qian

2021 ◽  
Vol 5 (2) ◽  
pp. 62-70
Author(s):  
Ömer KASIM

Cardiotocography (CTG) is used for monitoring the fetal heart rate signals during pregnancy. Evaluation of these signals by specialists provides information about fetal status. When a clinical decision support system is introduced with a system that can automatically classify these signals, it is more sensitive for experts to examine CTG data. In this study, CTG data were analysed with the Extreme Learning Machine (ELM) algorithm and these data were classified as normal, suspicious and pathological as well as benign and malicious. The proposed method is validated with the University of California International CTG data set. The performance of the proposed method is evaluated with accuracy, f1 score, Cohen kappa, precision, and recall metrics. As a result of the experiments, binary classification accuracy was obtained as 99.29%. There was only 1 false positive.  When multi-class classification was performed, the accuracy was obtained as 98.12%.  The amount of false positives was found as 2. The processing time of the training and testing of the ELM algorithm were quite minimized in terms of data processing compared to the support vector machine and multi-layer perceptron. This result proved that a high classification accuracy was obtained by analysing the CTG data both binary and multiple classification.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1223 ◽  
Author(s):  
Jianlei Gao ◽  
Senchun Chai ◽  
Baihai Zhang ◽  
Yuanqing Xia

Recently, network attacks launched by malicious attackers have seriously affected modern life and enterprise production, and these network attack samples have the characteristic of type imbalance, which undoubtedly increases the difficulty of intrusion detection. In response to this problem, it would naturally be very meaningful to design an intrusion detection system (IDS) to effectively and quickly identify and detect malicious behaviors. In our work, we have proposed a method for an IDS-combined incremental extreme learning machine (I-ELM) with an adaptive principal component (A-PCA). In this method, the relevant features of network traffic are adaptively selected, where the best detection accuracy can then be obtained by I-ELM. We have used the NSL-KDD standard dataset and UNSW-NB15 standard dataset to evaluate the performance of our proposed method. Through analysis of the experimental results, we can see that our proposed method has better computation capacity, stronger generalization ability, and higher accuracy.


Network along with Security is most significant in the digitalized environment. It is necessary to secure data from hackers and intruders. A strategy involved in protection of information from hackers will be termed as Intrusion Detection System (IDS).By taking into nature of attack or the usual conduct of user, investigation along with forecasting activities of the clients will be performed by mentioned system.Variousstrategies are utilized for the intrusion detection system. For the purpose of identification of hacking activity, utilization of machine learning based approach might be considered as novel strategy.In this paper, for identification of the hacking activity will be carried out by Twin Extreme Learning Machines (TELM).Employing the concept of Twin Support Vector Machine with the fundamental structure of Extreme Learning Machine is considered in the establishment of Twin Extreme Learning Machine (TELM).Also, its performance and accuracy are compared with the other intrusion detection techniques


Sign in / Sign up

Export Citation Format

Share Document