scholarly journals Natural Composite Reinforced by Lontar (Borassus flabellifer) Fiber: An Experimental Study on Open-Hole Tensile Strength

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Jefri Bale ◽  
Kristomus Boimau ◽  
Marselinus Nenobesi

A research has been conducted in the present study to investigate the effect of hole configuration on tensile strength of lontar fiber-reinforced composites. The lontar fiber-reinforced composites used in this study were produced by hand lay-up process. The lontar fiber-reinforced composites consist of short random fiber of 5 cm that contains 32% of nominal fiber volume as the reinforcement and unsaturated polyester as the matrix. The results show that the differences of hole configuration have an effect on tensile strength of lontar fiber-reinforced composites. It is found that the specific area of four-hole specimens experiences smaller strain propagation due to the redistributed stress and no stress passes through the hole. The damage of lontar fiber-reinforced composites with different hole configurations in tension is fairly straight and transverse to the loading axis, where the initial damage occurs in the form of matrix cracking, propagates into interfacial failure in form of delamination, and ultimately failed mainly due to the fiber breakage.

2019 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Andrey Krauklis ◽  
Abedin Gagani ◽  
Andreas Echtermeyer

Swelling in fiber-reinforced composites is anisotropic. In this work, dealing with glass fiber epoxy composite immersed in distilled water, swelling coefficients are obtained in each direction experimentally. Swelling behaviour in the fiber direction was constrained by the non-swelling fibers and was close to null, while swelling in the transverse directions was found to occur freely—similar to the unconstrained polymer. An analytical method for predicting anisotropic swelling in composites from the swelling of the matrix polymer is reported in this work. The method has an advantage that it is simple to use in practice and requires only a swelling coefficient of the matrix polymer, elastic constants of the matrix and fibers, and a known fiber volume fraction of the composite. The method was validated using finite element analysis. Good agreement was obtained and is reported between experimental hygroscopic swelling data, analytical and numerical results for composite laminates, indicating the validity of this predictive approach.


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


2011 ◽  
Vol 332-334 ◽  
pp. 121-125
Author(s):  
Xing Mei Guo ◽  
Yi Ping Qiu

The use of natural plant fibers as reinforcing fillers in fiber-polymer composites has drawn much interest in recent years. Natural plant fibers as reinforcing fillers have several advantages over inorganic fillers such as glass fibers; they are abundant, readily available, renewable, inexpensive, biodegradable, of low density, and of high specific strength. Hemp fibers are one of the most attractive natural plant fibers for fiber-reinforced composites because of their exceptional specific stiffness. In this review, we summarize recent progress in developments of the hemp fiber reinforced composites such as hemp fiber reinforced unsaturated polyester (UPE), hemp fiber reinforced polypropylene (PP), hemp fiber reinforced epoxy composites, and so on, illustrate with examples how they work, and discuss their intrinsic fundamentals and optimization designs. We are expecting the review to pave the way for developing fiber-polymer composites with higher strength.


Author(s):  
Vijay Kumar Mahakur ◽  
Sumit Bhowmik ◽  
Promod Kumar Patowari

Nowadays, the utilization of natural fiber reinforced composite has increased frequently. These natural fibers have significant features like low cost, renewable, and, more importantly, biodegradable in nature, making them to be utilized for various industrial sectors. However, the massive demand for natural fiber reinforced composites (NFRC), forces them to be machined and operated, which is required for countless areas in multiple industries like automotive, marine, aerospace and constructions. But before obtaining the final shape of any specimen, this specimen should come across numerous machining processes to get the desired shape and structure. Therefore, the present review paper focused on the various aspects during conventional and unconventional machining of the NFRC. It covers the work by exploring the influence of all input variables on the outcome produced after machining the NFRC. Various methodologies and tools are also discussed in this article for reducing the machining defects. The machining of the NFRC is found as a challenging task due to insufficient interlocking between the matrix and fibers, and minimum knowledge in machining characteristics and appropriate input parameters. Thus, this review is trying to assist the readers to grasp a basic understanding and information during the machining of the NFRC in every aspect.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 842 ◽  
Author(s):  
Weiwei Zhang ◽  
Jin Gu ◽  
Dengyun Tu ◽  
Litao Guan ◽  
Chuanshuang Hu

Paper fibers have gained broad attention in natural fiber reinforced composites in recent years. The specific problem in preparing paper fiber reinforced composites is that paper fibers easily become flocculent after pulverization, which increases difficulties during melt-compounding with polymer matrix and results in non-uniform dispersion of paper fibers in the matrix. In this study, old newspaper (ONP) was treated with a low dosage of gaseous methyltrichlorosilane (MTCS) to solve the flocculation. The modified ONP fibers were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TG). Then the modified ONP fibers and high-density polyethylene (HDPE) were extruded and pelletized to prepare ONP/HDPE composites via injection molding. Maleic anhydride-grafted polyethylene (MAPE) was added to enhance the interfacial bonding performance with the ultimate purpose of improving the mechanical strength of the composites. The mechanical properties such as tensile, flexural, and impact strength and the water absorption properties of the composite were tested. The results showed that the formation of hydrogen bonding between ONP fibers was effectively prevented after MTCS treatment due to the reduction of exposed –OH groups at the fiber surface. Excessive dosage of MTCS led to severe fiber degradation and dramatically reduced the aspect ratio of ONP fibers. Composites prepared with ONP fibers modified with 4% (v/w) MTCS showed the best mechanical properties due to reduced polarity between the fibers and the matrix, and the relatively long aspect ratio of treated ONP fibers. The composite with or without MAPE showed satisfactory water resistance properties. MTCS was proven to be a cheap and efficient way to pretreat old newspaper for preparing paper fiber reinforced composites.


2019 ◽  
Vol 54 (8) ◽  
pp. 1031-1048 ◽  
Author(s):  
Yang Yang ◽  
Qi He ◽  
Hong-Liang Dai ◽  
Jian Pang ◽  
Liang Yang ◽  
...  

A micromechanical model for short fiber-reinforced composites (SFRCs) with functionally graded interphases and a systematic prediction scheme to determine the effective properties are presented. The matrix and the fibers are regarded to be linear elastic, isotropic, and homogeneous. Fibers are assumed to be ellipsoids coated perfectly by functionally graded interphases, which is supposed to be formed chemically or physically by the constituents near the interface. First, to analyze the grading interphase effect, layer-wise concept is followed to divide the functionally graded interphases into multi-homogeneous sub-layers. Next, to take the effect of functionally graded interphases into account, a combination of multi-inclusion method and Mori–Tanaka method is applied to predict effective elastic properties of this unidirectional SFRCs with respect to the content and aspect ratio of the inclusions. By employing coordinate transformation, spatially elastic moduli are obtained. Finally, Voigt homogenization scheme is used to obtain the overall, averaged, symmetrical elastic properties of the SFRCs. Numerical examples and analyses demonstrate the applicability of the proposed method and indicate the influences of graded interphase, orientation, and aspect ratio of inclusions as well as properties and contents of the constituents on the overall properties of SFRCs.


Author(s):  
Xiaochun Wang

There are many methods on computation of transverse elastic properties of unidirectional fiber-reinforced composites when using the finite element method, such as three-dimension model, two-dimension plane strain model, unit cell model, etc[1]. But unit cell models could be used only when the fibers are arrayed regularly. The computations of three- and two-dimension plane strain models are tremendous when many fine fibers are spread randomly in the matrix so that the properties of block of composite must be computed. The paper proposes a new embedded-zone method to compute the transverse elastic properties for a block of fiber-reinforced composites containing a great amount of fibers embedded in the matrix stochastically while using very little computational work compared with three- and two-dimension plane strain model. The transverse elastic modulus and shear modulus of unidirectional fiber-reinforced composites are computed.


Sign in / Sign up

Export Citation Format

Share Document