scholarly journals Abnormal Functional Connectivity of Ventral Anterior Insula in Asthmatic Patients with Depression

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Yuqun Zhang ◽  
Yuan Yang ◽  
Rongrong Bian ◽  
Yingying Yin ◽  
Zhenghua Hou ◽  
...  

Objective. To explore the underlying mechanism of depression in asthmatic patients, the ReHo in the insula and its FC was used to probe the differences between depressed asthmatic (DA) and nondepressed asthmatic (NDA) patients. Methods. 18 DA patients, 24 NDA patients, and 60 healthy controls (HCs) received resting-state fMRI scan, severity of depression, and asthma control assessment. Results. DA patients showed increased FC between the left ventral anterior insula (vAI) and the left middle temporal gyrus compared with both NDA and HC groups. In addition, compared with HCs, the DA and NDA patients both exhibited increased FC between the left vAI and the right anterior cingulate cortex (ACC), decreased FC between the left vAI and the bilateral parietal lobe, and increased FC between the right vAI and the left putamen and the right caudate, respectively. Furthermore, the increased FC between the left vAI and the right ACC could differentiate HCs from both DA and NDA patients, and the increased FC between the right vAI and both the left putamen and the right caudate could separate NDA patients from HCs. Conclusions. This study confirmed that abnormal vAI FC may be involved in the neuropathology of depression in asthma. The increased FC between the left vAI and the left MTG could distinguish DA from the NDA and HC groups.

2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


2021 ◽  
Author(s):  
Lavinia Carmen Uscătescu ◽  
Lisa Kronbichler ◽  
Renate Stelzig-Schöler ◽  
Brandy-Gale Pearce ◽  
Sarah Said-Yürekli ◽  
...  

AbstractWe applied spectral dynamic causal modelling (Friston et al. in Neuroimage 94:396–407. 10.1016/j.neuroimage.2013.12.009, 2014) to analyze the effective connectivity differences between the nodes of three resting state networks (i.e. default mode network, salience network and dorsal attention network) in a dataset of 31 male healthy controls (HC) and 25 male patients with a diagnosis of schizophrenia (SZ). Patients showed increased directed connectivity from the left hippocampus (LHC) to the: dorsal anterior cingulate cortex (DACC), right anterior insula (RAI), left frontal eye fields and the bilateral inferior parietal sulcus (LIPS & RIPS), as well as increased connectivity from the right hippocampus (RHC) to the: bilateral anterior insula (LAI & RAI), right frontal eye fields and RIPS. In SZ, negative symptoms predicted the connectivity strengths from the LHC to: the DACC, the left inferior parietal sulcus (LIPAR) and the RHC, while positive symptoms predicted the connectivity strengths from the LHC to the LIPAR and from the RHC to the LHC. These results reinforce the crucial role of hippocampus dysconnectivity in SZ pathology and its potential as a biomarker of disease severity.


2020 ◽  
Author(s):  
Yangyang Cui ◽  
Huai-Bin Liang ◽  
Qian Zhu ◽  
Zhaoxia Qin ◽  
Yue Hu ◽  
...  

Abstract Background: Somatic symptom disorders (SSDs) are common medical disorders characterized by various biological, social, and psychological pathogenic factors. Little is known about the neural correlations of SSD. Methods: In this study, we evaluated the dysfunction in 45 patients with SSD and in 43 controls by combining the regional homogeneity (ReHo) amplitudes of low-frequency fluctuation (ALFF) methods based on resting-state functional magnetic resonance imaging. Results: Compared to the controls, the patients with SSD exhibited significantly greater ReHo in the right cingulate gyrus and smaller ReHo in the right precuneus, left inferior and temporal gyrus extending to the left middle temporal gyrus and left parahippocampal gyrus, and right pons. The SSD patients showed higher ALFF values in the cingulate gyrus extending to the left medial frontal gyrus, right insula extending to the right inferior frontal gyrus, and left medial frontal gyrus extending to the left anterior cingulate cortex. Conclusions: These dysfunction areas seem to have a particular importance for the occurrence of SSD, which may result in dysfunction in self-relevant processes, emotional processing, multimodal integration, arousal, interoception, and body perception.


2020 ◽  
Author(s):  
Yunhai Tu ◽  
Pingping Huang ◽  
Chuanwan Mao ◽  
Xiaozheng Liu ◽  
Jianlu Gao

[Objective] Functional connectivity density (FCD) mapping was used to investigate abnormalities and factors related to brain functional connectivity (F.C.) in cortical regions of patients with dysthyroid optic neuropathy (DON) and to analyze the pathogenesis of DON further. [Methods] Patients diagnosed with thyroid-associated ophthalmopathy (TAO) in the Eye Hospital were enrolled. All patients underwent comprehensive eye examinations and best-corrected visual acuity, visual field(V.F.) test. MRI data collection and analysis were completed in the 2nd Affiliated Hospital of Wenzhou Medical University. The patients were divided into two groups: the DON group, with an average visual field, mean deviation (M.D.) of both eyes < -5 dB, and the non-DON group (nDON group), with an average visual field M.D. of both eyes ≥ -2 dB. [Results] A total of 30 TAO patients (14 men, 16 women) with complete data who met the experimental requirements were enrolled. The average age was 48.79 (40~ 57) years. There were 16 patients in the DON group and 14 patients in the nDON group. No significant differences in age, gender, education level, and the maximum horizontal diameter of either medial rectus muscle were found between the two groups. The difference of brain FCD between the two groups showed significant abnormal connectivity in the right orbital gyri of the frontal lobe (Frontal_Inf_Orb_R) and the left precuneus in the DON group compared with the nDON group. As demonstrated by decreased FCD values in the right inferior frontal gyrus/orbital part, the relevant brain regions were the left middle temporal gyrus, left precuneus, left middle frontal gyrus, right postcentral gyrus, and brain gyri (excluding the supramarginal gyrus and angular gyrus) below the left parietal bone. The FCD associated with the left precuneus was increased, and the relevant brain areas were the left middle temporal gyrus, right cuneus, superior occipital gyrus, and right fusiform gyrus. A significant correlation was identified between the MD. of the binocular visual field and brain FCD. [Conclusion] The abnormal FCD in the cortex of DON patients suggests that a central nervous system mechanism may be related to the pathogenesis of the DON.


2020 ◽  
Vol 10 (11) ◽  
pp. 170
Author(s):  
Dmitry O. Sinitsyn ◽  
Ilya S. Bakulin ◽  
Alexandra G. Poydasheva ◽  
Liudmila A. Legostaeva ◽  
Elena I. Kremneva ◽  
...  

Insight is one of the most mysterious problem-solving phenomena involving the sudden emergence of a solution, often preceded by long unproductive attempts to find it. This seemingly unexplainable generation of the answer, together with the role attributed to insight in the advancement of science, technology and culture, stimulate active research interest in discovering its neuronal underpinnings. The present study employs functional Magnetic resonance imaging (fMRI) to probe and compare the brain activations occurring in the course of solving anagrams by insight or analytically, as judged by the subjects. A number of regions were activated in both strategies, including the left premotor cortex, left claustrum, and bilateral clusters in the precuneus and middle temporal gyrus. The activated areas span the majority of the clusters reported in a recent meta-analysis of insight-related fMRI studies. At the same time, the activation patterns were very similar between the insight and analytical solutions, with the only difference in the right sensorimotor region probably explainable by subject motion related to the study design. Additionally, we applied resting-state fMRI to study functional connectivity patterns correlated with the individual frequency of insight anagram solutions. Significant correlations were found for the seed-based connectivity of areas in the left premotor cortex, left claustrum, and left frontal eye field. The results stress the need for optimizing insight paradigms with respect to the accuracy and reliability of the subjective insight/analytical solution classification. Furthermore, the short-lived nature of the insight phenomenon makes it difficult to capture the associated neural events with the current experimental techniques and motivates complementing such studies by the investigation of the structural and functional brain features related to the individual differences in the frequency of insight-based decisions.


2015 ◽  
Vol 27 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Jolien C. Francken ◽  
Peter Kok ◽  
Peter Hagoort ◽  
Floris P. de Lange

Perception does not function as an isolated module but is tightly linked with other cognitive functions. Several studies have demonstrated an influence of language on motion perception, but it remains debated at which level of processing this modulation takes place. Some studies argue for an interaction in perceptual areas, but it is also possible that the interaction is mediated by “language areas” that integrate linguistic and visual information. Here, we investigated whether language–perception interactions were specific to the language-dominant left hemisphere by comparing the effects of language on visual material presented in the right (RVF) and left visual fields (LVF). Furthermore, we determined the neural locus of the interaction using fMRI. Participants performed a visual motion detection task. On each trial, the visual motion stimulus was presented in either the LVF or in the RVF, preceded by a centrally presented word (e.g., “rise”). The word could be congruent, incongruent, or neutral with regard to the direction of the visual motion stimulus that was presented subsequently. Participants were faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. Interestingly, the speed benefit was present only for motion stimuli that were presented in the RVF. We observed a neural counterpart of the behavioral facilitation effects in the left middle temporal gyrus, an area involved in semantic processing of verbal material. Together, our results suggest that semantic information about motion retrieved in language regions may automatically modulate perceptual decisions about motion.


2021 ◽  
Vol 11 (11) ◽  
pp. 1539
Author(s):  
Gianluca Cruciani ◽  
Maddalena Boccia ◽  
Vittorio Lingiardi ◽  
Guido Giovanardi ◽  
Pietro Zingaretti ◽  
...  

Studies comparing organized (O) and unresolved/disorganized (UD) attachment have consistently shown structural and functional brain abnormalities, although whether and how attachment patterns may affect resting state functional connectivity (RSFC) is still little characterized. Here, we investigated RSFC of temporal and limbic regions of interest for UD attachment. Participants’ attachment was classified via the Adult Attachment Interview, and all participants underwent clinical assessment. Functional magnetic resonance imaging data were collected from 11 UD individuals and seven matched O participants during rest. A seed-to-voxel analysis was performed, including the anterior and the posterior cingulate cortex, the bilateral insula, amygdala and hippocampus as seed regions. No group differences in the clinical scales emerged. Compared to O, the UD group showed lower RSFC between the left amygdala and the left cerebellum (lobules VIII), and lower functional coupling between the right hippocampus and the posterior portion of the right middle temporal gyrus. Moreover, UD participants showed higher RSFC between the right amygdala and the anterior cingulate cortex. Our findings suggest RSFC alterations in regions associated with encoding of salient events, emotion processing, memories retrieval and self-referential processing in UD participants, highlighting the potential role of attachment experiences in shaping brain abnormalities also in non-clinical UD individuals.


2021 ◽  
pp. 1-13
Author(s):  
Gavin M. Bidelman ◽  
Claire Pearson ◽  
Ashleigh Harrison

Categorical judgments of otherwise identical phonemes are biased toward hearing words (i.e., “Ganong effect”) suggesting lexical context influences perception of even basic speech primitives. Lexical biasing could manifest via late stage postperceptual mechanisms related to decision or, alternatively, top–down linguistic inference that acts on early perceptual coding. Here, we exploited the temporal sensitivity of EEG to resolve the spatiotemporal dynamics of these context-related influences on speech categorization. Listeners rapidly classified sounds from a /gɪ/-/kɪ/ gradient presented in opposing word–nonword contexts ( GIFT–kift vs. giss–KISS), designed to bias perception toward lexical items. Phonetic perception shifted toward the direction of words, establishing a robust Ganong effect behaviorally. ERPs revealed a neural analog of lexical biasing emerging within ~200 msec. Source analyses uncovered a distributed neural network supporting the Ganong including middle temporal gyrus, inferior parietal lobe, and middle frontal cortex. Yet, among Ganong-sensitive regions, only left middle temporal gyrus and inferior parietal lobe predicted behavioral susceptibility to lexical influence. Our findings confirm lexical status rapidly constrains sublexical categorical representations for speech within several hundred milliseconds but likely does so outside the purview of canonical auditory-sensory brain areas.


2019 ◽  
Author(s):  
Huayu Zhang ◽  
Yue Zhao ◽  
Weifang Cao ◽  
Dong Cui ◽  
Qing Jiao ◽  
...  

Abstract Background:ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods: The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined,ADHD-C and 32 patients of ADHD-Inattentive, ADHD-I) and 67 Typically-Developing Controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within different subtypes of ADHD. Results: Compared with TD-C group, the clusters of decreased functional connectivity were located in the left inferior occipital gyrus (p=0.0041) and right superior occipital gyrus (p=0.0011) of DAN, supplementary motor area (p=0.0036) of ECN, left supramarginal gyrus (p=0.0081) of SN, middle temporal gyrus (p=0.0041) and superior medial frontal gyrus (p=0.0055) of DMN in ADHD-C group. In the ADHD-I group, decreased functional connectivity was found in the right superior parietal gyrus (p=0.0017) of DAN and left middle temporal gyrus (p=0.0105) of DMN. The decreased functional connectivity of ADHD-C group was found in superior temporal gyrus (p=0.0062) of AN, inferior temporal gyrus (p=0.0016) of DAN, dorsolateral superior frontal gyrus (p=0.0082) of DMN compared to ADHD-I group. All the clusters surviving at p<0.05 (AlphaSim correction). Conclusion: The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.


Sign in / Sign up

Export Citation Format

Share Document