scholarly journals Fashion Evaluation Method for Clothing Recommendation Based on Weak Appearance Feature

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Zhang ◽  
Xiang Liu ◽  
Yunyu Shi ◽  
Yunqi Guo ◽  
Chaoqun Xu ◽  
...  

With the rapid rising of living standard, people gradually developed higher shopping enthusiasm and increasing demand for garment. Nowadays, an increasing number of people pursue fashion. However, facing too many types of garment, consumers need to try them on repeatedly, which is somewhat time- and energy-consuming. Besides, it is difficult for merchants to master the real-time demand of consumers. Herein, there is not enough cohesiveness between consumer information and merchants. Thus, a novel fashion evaluation method on the basis of the appearance weak feature is proposed in this paper. First of all, image database is established and three aspects of appearance weak feature are put forward to characterize the fashion level. Furthermore, the appearance weak features are extracted according to the characters’ facial feature localization method. Last but not least, consumers’ fashion level can be classified through support vector product, and the classification is verified with the hierarchical analysis method. The experimental results show that consumers’ fashion level can be accurately described based on the indexes of appearance weak feature and the approach has higher application value for the clothing recommendation system.

Author(s):  
Yanqiu Liang

To solve the problem of emotional loss in teaching and improve the teaching effect, an intelligent teaching method based on facial expression recognition was studied. The traditional active shape model (ASM) was improved to extract facial feature points. Facial expression was identified by using the geometric features of facial features and support vector machine (SVM). In the expression recognition process, facial geometry and SVM methods were used to generate expression classifiers. Results showed that the SVM method based on the geometric characteristics of facial feature points effectively realized the automatic recognition of facial expressions. Therefore, the automatic classification of facial expressions is realized, and the problem of emotional deficiency in intelligent teaching is effectively solved.


Author(s):  
Quanle Zou ◽  
Tiancheng Zhang ◽  
Wei Liu

In recent years, various large- and medium-sized shopping malls have been essential components of each city with the speed-up of China’s urbanization process and the improvement of residents’ living standard. A method for evaluating fire risk in shopping malls based on quantified safety checklist and structure entropy weight method was proposed according to related literatures as well as laws and regulations by analyzing the characteristics of fires occurring in shopping malls in recent years. At first, the factors influencing the fire risk in shopping malls were determined by carrying out on-site survey and visiting related organizations to construct an evaluation index system for fires occurring in shopping malls; afterwards, a quantified safety checklist composed of four parts (i.e. safety grade, grade description, scoring criterion and index quantification) was established based on related laws and regulations; subsequently, index weights were determined by utilizing structure entropy weight method, thus putting forward a method for assessing fire risk in shopping malls based on quantified safety checklist and structure entropy weight method. Eventually, the applicability of the evaluation method was validated exampled by Wal-Mart. The research result provides a theoretical basis for further improvement of the theoretical system for fire risk evaluation in shopping malls, and also exerts practical and guidance significance on timeous and effective early warning as well as prevention and control of building fires.


2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Jingtao Li ◽  
Yonglin Shen ◽  
Chao Yang

Due to the increasing demand for the monitoring of crop conditions and food production, it is a challenging and meaningful task to identify crops from remote sensing images. The state-of the-art crop classification models are mostly built on supervised classification models such as support vector machines (SVM), convolutional neural networks (CNN), and long- and short-term memory neural networks (LSTM). Meanwhile, as an unsupervised generative model, the adversarial generative network (GAN) is rarely used to complete classification tasks for agricultural applications. In this work, we propose a new method that combines GAN, CNN, and LSTM models to classify crops of corn and soybeans from remote sensing time-series images, in which GAN’s discriminator was used as the final classifier. The method is feasible on the condition that the training samples are small, and it fully takes advantage of spectral, spatial, and phenology features of crops from satellite data. The classification experiments were conducted on crops of corn, soybeans, and others. To verify the effectiveness of the proposed method, comparisons with models of SVM, SegNet, CNN, LSTM, and different combinations were also conducted. The results show that our method achieved the best classification results, with the Kappa coefficient of 0.7933 and overall accuracy of 0.86. Experiments in other study areas also demonstrate the extensibility of the proposed method.


Author(s):  
René Selbmann ◽  
Markus Baumann ◽  
Mateus Dobecki ◽  
Markus Bergmann ◽  
Verena Kräusel ◽  
...  

AbstractThe residual stress distribution in extruded components and wires after a conventional forming process is frequently unfavourable for subsequent processes, such as bending operations. High tensile residual stresses typically occur near the surface of the wire and thus limit further processability of the material. Additional heat treatment operations or shot peening are often inserted to influence the residual stress distribution in the material after conventional manufacturing. This is time and energy consuming. The research presented in this paper contains an approach to influence the residual stress distribution by modifying the forming process for wire-like applications. The aim of this process is to lower the resulting tensile stress levels near the surface or even to generate compressive stresses. To achieve these residual compressive stresses, special forming elements are integrated in the dies. These modifications in the forming zone have a significant influence on process properties, such as degree of deformation and deformation direction, but typically have no influence on the diameter of the product geometry. In the present paper, the theoretical approach is described, as well as the model set-up, the FE-simulation and the results of the experimental tests. The characterization of the residual stress states in the specimen was carried out by X-ray diffraction using the sin2Ψ method.


1995 ◽  
Vol 7 (1) ◽  
pp. 57-74 ◽  
Author(s):  
M.J.T. Reinders ◽  
P.J.L. van Beek ◽  
B. Sankur ◽  
J.C.A. van der Lubbe

2021 ◽  
Vol 263 (2) ◽  
pp. 4526-4531
Author(s):  
Kun Qian ◽  
Zhichao Hou ◽  
Ruixue Liu ◽  
Dengke Sun ◽  
Rongkang Luo

With the increasing demand of users for the acoustical comfort of commercial vehicles, the sound quality has become one of the important indicators of comfort evaluation. The research focuses on the objective evaluation method of the subjective perception of the sound quality in commercial vehicle. The interior noises of commercial vehicle with an inline six diesel engine are measured. The five psychoacoustic parameters (loudness, roughness, sharpness, fluctuation strength, tonality and articulation index) are applied to the evaluation and analysis of the interior noises of the commercial vehicle. Using psychoacoustic parameters to evaluate the noises in commercial vehicle, it is of great significance for the analysis and control of the noises in commercial vehicle. The research results provide a theoretical basis for guiding the sound quality design and development of commercial vehicles.


2012 ◽  
Vol 48 (2) ◽  
pp. 203-209 ◽  
Author(s):  
Camila Figueiredo Borgognoni ◽  
Joyce da Silva Bevilacqua ◽  
Ronaldo Nogueira de Moraes Pitombo

Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.


2014 ◽  
Vol 602-605 ◽  
pp. 370-374
Author(s):  
Hong Bo Xu ◽  
Jia Yu Li

Health assessment of the girder is crucial to an overhead traveling crane. This paper presents an intelligent damage identification method for the girder based on stiffness variation index (SVI) and least squares support vector machine (LSSVM). In the method, the SVI indicators, which have high resolution to environmental noise, serve as the damage feature to detect damage locations. Moreover, the SVI indicators are input to the LSSVM classifier for identifying the actual damage level of the girder. A case study on girder damage identification demonstrates that the method could determine the actual conditions of the girder structure accurately.


2021 ◽  
pp. 1-47
Author(s):  
Fabricio Li Vigni

Abstract Computer models and simulations have become, since the 1960s, an essential instrument for scientific inquiry and political decision making in several fields, from climate to life and social sciences. Philosophical reflection has mainly focused on the ontological status of the computational modeling, on its epistemological validity and on the research practices it entails. But in computational sciences, the work on models and simulations are only two steps of a longer and richer process where operations on data are as important as, and even more time and energy-consuming than modeling itself. Drawing on two study cases – computational embryology and computational epidemiology –, this article contributes to fill the gap by focusing on the operations of producing and re-using data in computational sciences. The different phases of the scientific and artisanal work of modelers include data collection, aggregation, homogenization, assemblage, analysis and visualization. The article contributes to deconstruct the ideas that data are self-evident informational aggregates and that data-driven approaches are exempted from theoretical work. More importantly, the paper stresses the fact that data are constructed and theory-laden not only in their fabrication, but also in their reusing.


2019 ◽  
Vol 53 (3) ◽  
pp. 46-53
Author(s):  
Caixia Xue ◽  
Xiang-nan Wang ◽  
Ning Jia ◽  
Yuan-fei Zhang ◽  
Hai-nan Xia

AbstractWith the continuous development of testing and evaluation of tidal current convertors, power quality assessment is becoming more and more critical. According to the characteristics of Chinese tidal current power generation and power quality standards, this paper proposes a comprehensive evaluation method of power quality based on K-means clustering and a support vector machine. The fundamental purpose of the method is to automatically select the weights of various indicators in the comprehensive assessment of power quality, by which the influence of subjective factors can be eliminated. In order to achieve the above purpose, K-means clustering is used for automatically classifying the operational data into five different categories. Then, a support vector machine is used to study and estimate the relationship of the operational data and categories. Using the method proposed in the paper, the analysis of operational data of a tidal current power generation shows that calculation results can objectively reflect the power quality of the device, and the influence of subjective factors is eliminated. The method can provide a reference for the testing and evaluation of a large amount of tidal current convertors in the future.


Sign in / Sign up

Export Citation Format

Share Document