scholarly journals Automatic Detection Technology of Sonar Image Target Based on the Three-Dimensional Imaging

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Wanzeng Kong ◽  
Jinshuai Yu ◽  
Ying Cheng ◽  
Weihua Cong ◽  
Huanhuan Xue

With 3D imaging of the multisonar beam and serious interference of image noise, detecting objects based only on manual operation is inefficient and also not conducive to data storage and maintenance. In this paper, a set of sonar image automatic detection technologies based on 3D imaging is developed to satisfy the actual requirements in sonar image detection. Firstly, preprocessing was conducted to alleviate the noise and then the approximate position of object was obtained by calculating the signal-to-noise ratio of each target. Secondly, the separation of water bodies and strata is realized by maximum variance between clusters (OTSU) since there exist obvious differences between these two areas. Thus image segmentation can be easily implemented on both. Finally, the feature extraction is carried out, and the multidimensional Bayesian classification model is established to do classification. Experimental results show that the sonar-image-detection technology can effectively detect the target and meet the requirements of practical applications.

2020 ◽  
Vol 10 (6) ◽  
pp. 1930
Author(s):  
Chengkun Fu ◽  
Huaibin Zheng ◽  
Gao Wang ◽  
Yu Zhou ◽  
Hui Chen ◽  
...  

Three-dimensional (3D) imaging under the condition of weak light and low signal-to-noise ratio is a challenging task. In this paper, a 3D imaging scheme based on time-correlated single-photon counting technology is proposed and demonstrated. The 3D imaging scheme, which is composed of a pulsed laser, a scanning mirror, single-photon detectors, and a time-correlated single-photon counting module, employs time-correlated single-photon counting technology for 3D LiDAR (Light Detection and Ranging). Aided by the range-gated technology, experiments show that the proposed scheme can image the object when the signal-to-noise ratio is decreased to −13 dB and improve the structural similarity index of imaging results by 10 times. Then we prove the proposed scheme can image the object in three dimensions with a lateral imaging resolution of 512 × 512 and an axial resolution of 4.2 mm in 6.7 s. At last, a high-resolution 3D reconstruction of an object is also achieved by using the photometric stereo algorithm.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 748
Author(s):  
Yulong An ◽  
Yanmei Zhang ◽  
Haichao Guo ◽  
Jing Wang

Low-cost Laser Detection and Ranging (LiDAR) is crucial to three-dimensional (3D) imaging in applications such as remote sensing, target detection, and machine vision. In conventional nonscanning time-of-flight (TOF) LiDAR, the intensity map is obtained by a detector array and the depth map is measured in the time domain which requires costly sensors and short laser pulses. To overcome such limitations, this paper presents a nonscanning 3D laser imaging method that combines compressive sensing (CS) techniques and electro-optic modulation. In this novel scheme, electro-optic modulation is applied to map the range information into the intensity of echo pulses symmetrically and the measurements of pattern projection with symmetrical structure are received by the low bandwidth detector. The 3D imaging can be extracted from two gain modulated images that are recovered by solving underdetermined inverse problems. An integrated regularization model is proposed for the recovery problems and the minimization functional model is solved by a proposed algorithm applying the alternating direction method of multiplier (ADMM) technique. The simulation results on various subrates for 3D imaging indicate that our proposed method is feasible and achieves performance improvement over conventional methods in systems with hardware limitations. This novel method will be highly valuable for practical applications with advantages of low cost and flexible structure at wavelengths beyond visible spectrum.


Author(s):  
Hsin-Lin Ho ◽  
Jun-Da Chen ◽  
Ching-An Yang ◽  
Chia-Chi Liu ◽  
Cheng-Ting Lee ◽  
...  

AbstractWe characterize a new chaos lidar system configuration and demonstrate its capability for high-speed 3D imaging. Compared with a homodyned scheme employing single-element avalanche photodetectors (APDs), the proposed scheme utilizes a fiber Bragg grating and quadrant APDs to substantially increase the system throughput, frame rate, and field-of-view. By quantitatively analyzing the signal-to-noise ratio, peak-to-standard deviation of the sidelobe level, precision, and detection probability, we show that the proposed scheme has better detection performance suitable for practical applications. To show the feasibility of the chaos lidar system, while under the constrain of eye-safe regulation, we demonstrate high-speed 3D imaging with indoor and outdoor scenes at a throughput of 100 kHz, a frame rate of 10 Hz, and a FOV of 24.5$$^\circ $$ ∘ $$\times $$ × 11.5$$^\circ $$ ∘ for the first time.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyan Li ◽  
Yubing Han ◽  
Wenjie Liu ◽  
Cuifang Kuang ◽  
Xu Liu ◽  
...  

Three-dimensional (3D) imaging using dual-lens fluorescence microscopies is popular in observing fluorescently labeled biological samples, such as mammalian/model animal cells, tissues, and embryos. Specifically, dual-lens super-resolution fluorescence microscopy methods using two opposing objective lenses allow significantly higher axial resolution and better signal to noise ratio than traditional single-lens counterparts, and thus distinguish more details in 3D images of fine intracellular structures. For 3D imaging of thick tissues and entire embryos, dual-lens light-sheet fluorescence microscopy methods using two objective lenses, either orthogonal or non-orthogonal, to achieve selective plane illumination, can meet the requirements, and thus can be used to observe embryo development and structures of interest in thick tissues. This review summarizes both dual-lens fluorescence microscopy methods, including their principles, configurations, and 3D imaging applications, providing a guideline for biological laboratories with different 3D imaging needs.


2012 ◽  
Vol 461 ◽  
pp. 370-372
Author(s):  
Yue Zhang ◽  
Ting Ting Gao

With the road construction, an automatic detection of road surface of rutting will be the main detection methods. VC-based digital imaging detection technology has an advantage of the vehicle, such as a simple structure, amount of data storage capacity, less affected by vehicle vibration. This article based on digital imaging technology detects grayscale bitmap format captured image information of the rutting. It focused on the grayscale bitmap image processing. The article shows that by generating curve can accurately reflect the actual situation of the road. And it can greatly improve the efficiency of road data and the accuracy of automatic detection.


Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3605-3613 ◽  
Author(s):  
Chunsheng Guan ◽  
Jian Liu ◽  
Xumin Ding ◽  
Zhuochao Wang ◽  
Kuang Zhang ◽  
...  

AbstractIn this paper, a novel method is proposed to achieve two distinct information channels by simultaneously manipulating both the transmitted cross- and co-polarized components of a 1-bit coding metasurface under linearly polarized incidence. Compared to previously demonstrated incidence-switchable or position multiplexed holograms, our proposed coding meta-hologram can simultaneously project two independent holographic images without inevitable change of the incidence state and can at the same time also avoid crosstalk between different channels. Moreover, the orientation of the double-layered split ring (SR) apertures is specially designed to be 45° or 135° to achieve identical multiplexed functionality for both x-polarized and y-polarized incidences. The proof-of-concept experimental demonstrations present total transmittance efficiency above 30% for the dual linearly polarized incidences at 15 GHz, and good imaging performances with 53.98%/48.18% imaging efficiency, 1.55%/1.46% RMSE, and 29.9/28.72 peak signal-to-noise ratio for the cross-/co-polarized channels under y-polarized incidence, and 47.27%/45.75% imaging efficiency, 1.55%/1.43% RMSE, and 18.74/25.93 peak signal-to-noise ratio under x-polarized incidence, demonstrating great potential of the proposed multiplexed coding meta-hologram in practical applications such as data storage and information processing.


2021 ◽  
Author(s):  
Nitin Dubey ◽  
Joseph Rosen

Abstract Interferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holographic technique with lateral and axial resolution similar to a regular lens-based imaging system. The properties of I-COACH are dictated by the shape of the system’s point response termed point spread hologram (PSH). As previously shown, chaotic PSHs which are continuous over some area on the image sensor enable the system to perform three-dimensional (3D) holographic imaging. We also showed that a PSH of an ensemble of sparse dots improves the system’s signal-to-noise ratio (SNR) but reduces the dimensionality of the imaging from three to two dimensions. In this study, we test the midway shape of PSH, an ensemble of sparse islands distributed over the sensor plane. A PSH of isolated chaotic islands improves the SNR of the system compared to continuous chaotic PSH without losing the capability to perform 3D imaging. Reconstructed images of this new system are compared with images of continuous PSH, dot-based PSH, and direct images of a lens-based system. Visibility, SNR, and the product of visibility with SNR are the parameters used in the study. We also demonstrate the imaging capability of a system with partial annular apertures. The reconstruction results have better SNR and visibility than lens-based imaging systems with the same annular apertures.


2019 ◽  
Vol 283 ◽  
pp. 04010
Author(s):  
Weihua Cong ◽  
Lisheng Zhou

With the development of 21th century seabed imaging sonar technology, more and more attention is paid to buried object detection technology in the world. In this paper, a low frequency and high resolution three-dimensional acoustic imaging of buried object detection method and its application example are given. Compared with the traditional two-dimensional synthetic aperture imaging, the 3D imaging technology not only solves the problem of the aliasing of the seabed formation echo and the sea floor echo, being able to provide the target buried depth, but also the 3D imaging is more helpful to the image recognition. The 3D acoustic imaging method proposed by this paper has already become the development trend of buried object detection technology. We have noticed that, different from the three-dimensional visualization of the target in the water, the three-dimensional visualization of buried objects has a serious formation image occlusion problem. In addition, the three-dimensional imaging needs to be obtained centimeter-level resolution on three dimensions for better image recognition of small buried objects, in which azimuth resolution is the bottleneck.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601102 ◽  
Author(s):  
Xiong Li ◽  
Lianwei Chen ◽  
Yang Li ◽  
Xiaohu Zhang ◽  
Mingbo Pu ◽  
...  

As nanofabrication technology progresses, the emerging metasurface has offered unique opportunities for holography, such as an increased data capacity and the realization of polarization-sensitive functionality. Multicolor three-dimensional (3D) meta-hologram imaging is one of the most pursued applications for meta-hologram not yet realized. How to reduce the cross-talk among different colors in broad bandwidth designs is a critical question. On the basis of the off-axis illumination method, we develop a novel way to overcome the cross-talk limitation and achieve multicolor meta-holography with a single type of plasmonic pixel. With this method, the usable data capacity can also be improved. It not only leads to a remarkable image quality, with a signal-to-noise ratio (SNR) five times better than that of the previous meta-hologram designs, but also paves the way to new meta-hologram devices, which mark an advance in the field of meta-holography. For example, a seven-color meta-hologram can be fabricated with a color gamut 1.39 times larger than that of the red, green, and blue (RGB) design. For the first time, a full-color meta-holographic image in the 3D space is also experimentally demonstrated. Our approach to expanding the information capacity of the meta-hologram is unique, which extends broad applications in data storage, security, and authentication.


TECHNOLOGY ◽  
2017 ◽  
Vol 05 (02) ◽  
pp. 74-80 ◽  
Author(s):  
Ilker Hacihaliloglu

Due to its real-time, non-radiation based three-dimensional (3D) imaging capabilities, ultrasound (US) has been incorporated into various orthopedic procedures. However, imaging artifacts, low signal-to-noise ratio (SNR) and bone boundaries appearing several mm in thickness make the analysis of US data difficult. This paper provides a review about the state-of-the-art bone segmentation and enhancement methods developed for two-dimensional (2D) and 3D US data. First, an overview for the appearance of bone surface response in B-mode data is presented. Then, classification of the proposed techniques in terms of the image information being used is provided. Specifically, the focus is given on segmentation and enhancement of B-mode US data. The review is concluded by discussing future directions of research and additional challenges which need to be overcome in order to make this imaging modality more successful in orthopedics.


Sign in / Sign up

Export Citation Format

Share Document