scholarly journals Effect of Frying Treatments on Texture and Colour Parameters of Deep Fat Fried Yellow Fleshed Cassava Chips

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
A. B. Oyedeji ◽  
O. P. Sobukola ◽  
Folake Henshaw ◽  
M. O. Adegunwa ◽  
O. A. Ijabadeniyi ◽  
...  

Effects of frying treatments on texture (hardness) and colour parameters (L,a,b,ΔE) during deep fat frying of yellow fleshed cassava root slices (TMS 01/1371) were investigated. Slices (dimension of 40 mm × 25 mm × 3 mm) were divided into three portions and subjected to vacuum frying (fresh slices) and atmospheric frying (fresh and predried slices) and equivalent thermal driving forces (ETDF) of 60°C, 70°C, and 80°C were maintained during frying. The quality attributes investigated were best preserved in vacuum fried chips. The overall colour change in chips fried under vacuum conditions at 118°C and 8 min was the least (21.20) compared to fresh and atmospherically predried ones (16.69 and 14.81, resp.). A sharp reduction in the breaking force was obtained for all frying treatments after 8 min and this effect was the least in vacuum fried chips. First-order kinetics modeled the changes in quality attributes for all the temperatures investigated. Rate constants k (min−1) obtained for vacuum frying were almost equal to that of atmospheric frying while activation energies for hardness and colour change were 53.30 and 467.11 KJ/mol, respectively. Quality attributes studied were best preserved during vacuum frying.

2019 ◽  
Vol 75 (2) ◽  
pp. 281-296 ◽  
Author(s):  
Insung Han ◽  
Xianghui Xiao ◽  
Haiping Sun ◽  
Ashwin J. Shahani

Quasicrystals and their approximants have triggered widespread interest due to the challenge of solving their complex crystal structures as well as their possibly exceptional properties. The structural motifs of approximants are similar to those of the corresponding quasicrystals, but to what extent are their crystallization pathways the same? Unfortunately, there have been very few in situ experimental investigations to answer this question. Here, by leveraging the high penetrating power of hard X-rays, synchrotron-based X-ray tomography was conducted in order to capture the nucleation and growth of a decagonal quasicrystal and its related approximant. The combination of data-driven computational analysis with new thermodynamic databases allowed the characterization, with high precision, of the constitutional and kinetic driving forces for crystallization. The experimental results prove that the growth of both crystals from a liquid is dominated by first-order kinetics. Nevertheless, and somewhat surprisingly, significant differences were observed in their rates of nucleation and growth. The reasons for such divergent behaviours are discussed in light of contemporary theories of intermetallic crystallization.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


1995 ◽  
Vol 31 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Jean-Pierre Arcangeli ◽  
Erik Arvin

This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols, chlorophenols, nitrophenol, chlorobenzenes and aromatic nitrogen-, sulphur- or oxygen-containing heterocyclic compounds (NSO-compounds). Furthermore, a comparison with degradation rates observed for easily degradable organics is also presented. At concentrations below 20-100 μg/l the degradation of the aromatic compounds was typically controlled by first order kinetics. The first-order surface removal rate constants were surprisingly similar, ranging from 2 to 4 m/d. It appears that NSO-compounds inhibit the degradation of aromatic hydrocarbons, even at very low concentrations of NSO-compounds. Under nitrate-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking into account cometabolism and competitive inhibition is proposed.


2020 ◽  
Vol 16 ◽  
Author(s):  
M. Alarjah

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole. Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in-vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method. Method: Chromatographic analysis was done using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37ºC. Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively. Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in-vivo study for the metronidazole derivatives with monoterpenes and eugenol.


1984 ◽  
Vol 67 (4) ◽  
pp. 844-845
Author(s):  
Naomi Richfield-Fratz

Abstract 4,4'-(Diazoamino)-bis(5-methoxy-2-methylbenzenesuIfonic acid), when present as a reaction by-product in FD&C Red No. 40, is shown to decompose rapidly in aqueous solutions of the color additive. The decomposition is halted by the addition of sodium borate buffer. Quantitationly liquid chromatography shows that decomposition is nonlinear with time and follows approximate first order kinetics.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
O. R. Faloye ◽  
O. P. Sobukola ◽  
T. A. Shittu ◽  
H. A. Bakare

Abstract Influence of deep fat frying parameters on quality attributes of chicken nuggets from FUNAAB-Alpha broilers and optimization of the process using Box-Behnken experimental design of response surface methodology was investigated. Fried chicken nuggets were obtained using frying temperature (155–175 °C), frying time (3–7 min) and sample thickness (0.5–2.5 cm) as independent variables. Oil and moisture contents, texture (hardness, chewiness, adhesiveness, cohesiveness and springiness) and colour (L*, a* and b*) of samples were analyzed using standard procedures. Significance of each term in polynomial regression equations was evaluated on quality attributes. The accuracy of the regression models varied between 0.727 and 0.939. The effect of frying temperature on quality attributes of fried chicken nuggets was more significant (p > 0.05). The optimum frying temperature, frying time and sample thickness are determined as 175 °C, 3 min, 2.32 cm, respectively. Absolute percent error between optimized and experimental data were within the acceptable limit. Graphic abstract


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Rafał Pietraś ◽  
Izabela Kozak ◽  
Karolina Lejwoda ◽  
...  

A comparative study of chemical stability of terfenadine (TER) and itsin vivometabolite fexofenadine (FEX) was performed. Both TER and FEX were subjected to high temperature at different pH and UV/VIS light at different pH and then quantitatively analyzed using new validated LC-UV methods. These methods were used to monitor the degradation processes and to determine the kinetics of degradation for both the compounds. As far as the effects of temperature and pH were concerned, FEX occurred more sensitive to degradation than TER. As far as the effects of UV/VIS light and pH were concerned, the both drugs were similarly sensitive to high doses of light. Using all stress conditions, the processes of degradation of TER and FEX followed the first-order kinetics. The results obtained for these two antihistaminic drugs could be helpful in developing their new derivatives with higher activity and stability at the same time.


1994 ◽  
Vol 301 (1-3) ◽  
pp. 177-196 ◽  
Author(s):  
W. Erley ◽  
Y. Li ◽  
D.P. Land ◽  
John C. Hemminger

2008 ◽  
Vol 73 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic

The stability of chlorophylls toward UV irradiation was studied by Vis spectrophotometry in extracts containing mixtures of photosynthetic pigments in acetone and n-hexane. The chlorophylls underwent destruction (bleaching) obeying first-order kinetics. The bleaching was governed by three major factors: the energy input of the UV photons, the concentration of the chlorophylls and the polarity of the solvent, implying different molecular organizations of the chlorophylls in the two solvents.


Sign in / Sign up

Export Citation Format

Share Document