scholarly journals 3D Printing Aids Acetabular Reconstruction in Complex Revision Hip Arthroplasty

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Andrew J. Hughes ◽  
Cathal DeBuitleir ◽  
Philip Soden ◽  
Brian O’Donnchadha ◽  
Anthony Tansey ◽  
...  

Revision hip arthroplasty requires comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional (3D) representation of osseous anatomy obtainable, which provide visual and tactile feedback. Such life-size 3D models were manufactured from computed tomography scans of three hip joints in two patients. The first patient had undergone multiple previous hip arthroplasties for bilateral hip infections, resulting in right-sided pelvic discontinuity and a severe left-sided posterosuperior acetabular deficiency. The second patient had a first-stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The images were imported into Materialise MIMICS 14.12®. The models were manufactured using selective laser sintering. Accurate templating was performed preoperatively. Acetabular cup, augment, buttress, and cage sizes were trialled using the models, before being adjusted, and resterilised, enhancing the preoperative decision-making process. Screw trajectory simulation was carried out, reducing the risk of neurovascular injury. With 3D printing technology, complex pelvic deformities were better evaluated and treated with improved precision. Life-size models allowed accurate surgical simulation, thus improving anatomical appreciation and preoperative planning. The accuracy and cost-effectiveness of the technique should prove invaluable as a tool to aid clinical practice.

2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


2015 ◽  
Vol 23 ◽  
pp. S82
Author(s):  
A. Hughes ◽  
B. O'Donnchadha ◽  
A. Tansey ◽  
C. McMahon ◽  
C. Hurson

2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


2019 ◽  
Vol 48 (4) ◽  
pp. 350-350
Author(s):  
Mohamed Ghanem ◽  
Dirk Zajonz ◽  
Rima Nuwayhid ◽  
Christoph Josten ◽  
Christoph Eckhard Heyde ◽  
...  

2018 ◽  
Vol 52 (6) ◽  
pp. 625 ◽  
Author(s):  
YaroslavA Rukin ◽  
GennadiyM Kavalerskiy ◽  
ValeriyY Murylev ◽  
PavelM Elizarov ◽  
AlexeyV Lychagin ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 729 ◽  
Author(s):  
Dall’Ava ◽  
Hothi ◽  
Di Laura ◽  
Henckel ◽  
Hart

Three-dimensional (3D) printed titanium orthopaedic implants have recently revolutionized the treatment of massive bone defects in the pelvis, and we are on the verge of a change from conventional to 3D printed manufacture for the mass production of millions of off-the-shelf (non-personalized) implants. The process of 3D printing has many adjustable variables, which taken together with the possible variation in designs that can be printed, has created even more possible variables in the final product that must be understood if we are to predict the performance and safety of 3D printed implants. We critically reviewed the clinical use of 3D printing in orthopaedics, focusing on cementless acetabular components used in total hip arthroplasty. We defined the clinical and engineering rationale of 3D printed acetabular cups, summarized the key variables involved in the manufacturing process that influence the properties of the final parts, together with the main limitations of this technology, and created a classification according to end-use application to help explain the controversial and topical issues. Whilst early clinical outcomes related to 3D printed cups have been promising, in-depth robust investigations are needed, partly because regulatory approval systems have not fully adapted to the change in technology. Analysis of both pristine and retrieved cups, together with long-term clinical outcomes, will help the transition to 3D printing to be managed safely.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


2020 ◽  
Vol 75 ◽  
pp. 04016 ◽  
Author(s):  
Ihor Hevko ◽  
Olha Potapchuk ◽  
Iryna Lutsyk ◽  
Viktorya Yavorska ◽  
Viktoriia Tkachuk

The authors present methods building and printing three-dimensional models for graphical reconstruction of historical architectural objects. Procedure sequence of the methods is exemplified through building the model of the Parochial Cathedral of St. Mary of the Perpetual Assistance of the 1950s. After analyzing and assessing the most popular specialized software means, the 3DS Max environment is chosen to build a three-dimensional model. Suggested software tools enable increased accuracy, speed and granularity of fixation of complex systems and expanded databases, providing efficient instruments to deal with bulk data and being relevant to new IT achievements. Sequence and content of operations for analytical and modeling cycles are substantiated. The cathedral model is built on the basis of archive photographs and drafts. The authors describe methods and the algorithm of procedures, principles of architectural and spacious modeling to recreate the architectural object. The three-dimensional model is built by applying a stereogram miniature of the destroyed Cathedral. Reconstruction of spacious configuration of the objects is based on parallax assessment of images. Stages of project implementation are determined. There are described methods of implementing modeling by 3DS Max tools and preparing the model for 3D printing in Cura.


Sign in / Sign up

Export Citation Format

Share Document