scholarly journals Stackelberg Interdependent Security Game in Distributed and Hierarchical Cyber-Physical Systems

2017 ◽  
Vol 2017 ◽  
pp. 1-19
Author(s):  
Jiajun Shen ◽  
Dongqin Feng

With the integration of physical plant and network, cyber-physical systems (CPSs) are increasingly vulnerable due to their distributed and hierarchical framework. Stackelberg interdependent security game (SISG) is proposed for characterizing the interdependent security in CPSs, that is, the interactions between individual CPSs, which are selfish but nonmalicious with the payoff function being formulated from a cross-layer perspective. The pure-strategy equilibria for two-player symmetric SISG are firstly analyzed with the strategy gap between individual and social optimum being characterized, which is known as negative externalities. Then, the results are further extended to the asymmetric and m-player SISG. At last, a numerical case of practical experiment platform is analyzed for determining the comprehensively optimal security configuration for administrator.

Author(s):  
Lee T. Maccarone ◽  
Daniel G. Cole

Abstract Cyber-physical systems are engineered systems that rely on the integration of physical processes and computational resources. While this integration enables advanced techniques for monitoring and controlling systems, it also exposes the physical process to cyber-threats. An attacker who is able to access control inputs and mask measurements could damage the system while remaining undetected. By masking certain measurement signals, an attacker may be able to render a portion of the state space unobservable, meaning that it is impossible to estimate or infer the value of those states. This is called an observability attack. A game-theoretic approach is presented to analyze observability attacks. The attacker's strategy set includes all possible combinations of masked measurements. The defender's strategy set includes all possible combinations of measurement reinforcements. The attacker's and defender's utilities are quantified using the responses of the observable and unobservable states. The observability attack game is analyzed for a nuclear balance of plant system. Multiple pure-strategy and mixed-strategy Nash equilibria are identified, and the conditions for their existence are presented. Using this procedure, a security and control engineer can select the optimal strategy to defend a cyber-physical system from observability attacks.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document