scholarly journals Preparation and Evaluation of Smart Nanocarrier Systems for Drug Delivery Using Magnetic Nanoparticle and Avidin-Iminobiotin System

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Shuguo Sun ◽  
Beiping Li ◽  
Tao Yang ◽  
Meihu Ma ◽  
Qinlu Lin ◽  
...  

Therapeutic efficacy and the regulation of drug release can be improved by using selective targeting drug delivery systems. In this paper, we have demonstrated avidin-immobilized magnetic nanoparticles (AMNPs) as a novel targeted drug delivery system to deliver iminobiotinylated daunomycin (IDAU). TEM, XRD, VSM, and FTIR were employed for the physicochemical characterization of the drug-loaded MNPs. The binding of IDAU had little effect on sizes of AMNPs (~35 nm), but the stability and dispersibility of the nanoparticles were improved. The study also found that the loading capacity and efficiency of nanoparticles were mainly dependent on affinity interaction between IDAU and AMNPs. The optimal loading capacity and efficiency of MNPs for IDAU were 0.408 ± 0.012 mg/g and 94.18 ± 2.64% according to the reversed-phase high-performance liquid chromatography (RP-HPLC) data, respectively. Under the conditions of pH 6.8 and 1 mmol/L of biotin, the drug-loaded MNPs released rapidly at beginning and then maintained at a certain controllable release level. The effect of IDAU on DLKP proliferation was tested, and the results showed that IC50 was (1.60 ± 0.05) × 10−3 mg/mL. Our findings indicated that AMNPs hold tremendous potential as an effective drug delivery system.

2020 ◽  
Vol 10 (7) ◽  
pp. 2595 ◽  
Author(s):  
Chih-Ling Huang ◽  
Wei Fang ◽  
Bo-Rui Huang ◽  
Yan-Hsiung Wang ◽  
Guo-Chung Dong ◽  
...  

Bioactive glass (BG) was made by the sol–gel method and doped with boron (B) to increase its bioactivity. Microstructures of BG and B-doped BG were observed by scanning electron microscopy, and phase identification was performed using an X-ray diffraction diffractometer. The ion concentrations released after soaking in simulated body fluid (SBF) for 1, 4, and 7 days were measured by inductively coupled plasma mass spectrometry, and the pH value of the SBF was measured after soaking samples to determine the variation in the environment. Brunauer–Emmett–Teller (BET) analysis was performed to further verify the characteristics of mesoporous structures. High performance liquid chromatography was used to evaluate the drug delivery ability of teicoplanin. Results demonstrated that B-doped BG performed significantly better than BG in parameters assessed by the BET analysis. B-doped BG has nanopores and more rough structures, which is advantageous for drug delivery as there are more porous structures available for drug adsorption. Moreover, B-doped BG was shown to be effective for keeping pH values stable and releasing B ions during soaking in SBF. The cumulative release of teicoplanin from BG and B-doped BG reached 20.09% and 3.17% on the first day, respectively. The drug release gradually slowed, reaching 29.43% and 4.83% after 7 days, respectively. The results demonstrate that the proposed bioactive glass has potential as a drug delivery system.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jinglei Du ◽  
Qiang Li ◽  
Lin Chen ◽  
Shicai Wang ◽  
Li Zhang ◽  
...  

A dual-targeting drug delivery system (DTDDS) with magnetic targeting and active targeting was obtained to improve the targeting and drug-loading capacity of magnetic drug nanocarriers. An ultraviolet-visible spectrophotometer and flow cytometry were used to investigate the drug-loading and release capacity, cytotoxicity, and inhibition of tumor cell proliferation, separately. Results show that DTDDS has obvious magnetic characteristics, on which the modification amount of folic acid is 64.82 mg g-1. Doxorubicin was taken as a template drug to evaluate its drug-loading capacity, which was as high as 577.12 mg g-1. Good biocompatibility and low cytotoxicity of DTDDS were further confirmed. Moreover, DTDDS can target the folate receptor on the surface of HeLa cells and deliver doxorubicin into HeLa cells, thereby increasing the proliferation inhibition for cancer cells. Therefore, this new dual-targeting drug delivery system shows potential in significantly reducing the toxic side effects of chemotherapy and improving chemotherapy efficiency.


Author(s):  
Phan Thi Nghia ◽  
Tran Thi Hai Yen ◽  
Vu Thi Thu Giang

This study develops the in-house specifications of self-nanoemulsifying drug delivery system (SNEDDS) containing rosuvastatin based on the following criteria: description, identification, droplet size (≤200 nm) and polydiversity index (not more than 0.3), drug proportion in the oil phase (≥ 90.0%), assay (≥ 95.0% and ≤105.0% of the labeled amount of rosuvastatin (C22H28FN3O6S). The criteria were validated and the results were suitable for identification and determination of rosuvastatin in SNEDDS. Additionally, the results of the stability study show that the rosuvastatin SNEDDS met the criteria of description, droplet size, PDI, assay and drug rate in the oil phase for 12-month storage under the long-term condition (12 months) and 6 months on accelerated condition. Keywords Rosuvastatin, SNEDDS, specification, droplet size, entrapment efficiency. References [1] A. Luvai, W. Mbagaya, A.S. Hall, I.H. Barth, Rosuvastatin: A Review of the Pharmacology and Clinical Effectiveness in Cardiovascular Disease, Clinical Medicine Insights: Cardiology 6 (2012) 17–33. https://doi.org/10.4137/CMC.S4324. [2] K. Balakumar, C.V. Raghavan, N.T. Selvan, R.H. Prasad, S. Abdu, Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation, Colloids and Surfaces B: Biointerfaces. 112 (2013) 337–343. http://dx.doi.org/10.1016/j.colsurfb.2013.08.025. [3] S. Elkadi, S. Elsamaligy, S. Al-Suwayeh, H. Mahmoud, The Development of Self-nanoemulsifying Liquisolid Tablets to Improve the Dissolution of Simvastatin, American Association of Pharmaceutical Scientists 18(7) (2017) 2586–2597. https://doi.org/10.1208/s12249-017-0743-z. [4] D. Patel, K.K. Sawant, Self Micro-Emulsifying Drug Delivery System: Formulation Development and Biopharmaceutical Evaluation of Lipophilic Drugs, Current Drug Delivery 6 (2009) 419–424. https://doi.org/10.2174/156720109789000519. [5] S.D. Maurya, R.K.K. Arya, G Rajpal, R.C. Dhakar, Self-micro emulsifying drug delivery systems (SMEDDS): A review on physico-chemical and biopharmaceutical aspects, Journal of Drug Delivery and Therapeutics 7(3) (2017) 55–65. https://doi.org/10.22270/jddt.v7i3.1453.[6] P. Borman, D. Elder, Q2(R1) Validation of analytical procedures: text and methodology, in: A. Teasdale, D. Elder, R.W. Nims (Eds), ICH quality guidelines: an implementation guide, John Wiley & Sons Inc., Hoboken, 2018, pp. 127-166. [7] United States Pharmacopoeia 41, rosuvastatin tablets monograph.          


2018 ◽  
Vol 19 (11) ◽  
pp. 3670 ◽  
Author(s):  
Elisa Martella ◽  
Claudia Ferroni ◽  
Andrea Guerrini ◽  
Marco Ballestri ◽  
Marta Columbaro ◽  
...  

Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document