A single-layer low-cost reflectarray antenna using dual-resonant element approach

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ting Liu ◽  
Lin Zhang ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Zhiguo Zeng

Abstract A single-layer wideband high efficiency reflectarray in Ku-band has been presented in this paper. A novel dual-resonant patch element approach has been analyzed and optimized to obtain good radiation performances within the operating frequency band. The phase shift range of 573° can be obtained with less steep linear phase shift curve. To compensate the differential spatial phase delays from the feed to the elements, the variable size technique has been utilized for obtaining required phase shifts. The reflectarray aperture has been designed, manufactured and measured. Measured results are in good agreement with the simulated ones. The measured gain of the reflectarray aperture at center frequency can reach 27.2 dBi, which is equivalent to aperture efficiency of 51.3%, and the 1-dB gain bandwidth of the aperture is 18.4%.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xinyu Da ◽  
Jialiang Wu ◽  
Jing Zhao ◽  
Lin Baoqin ◽  
Kai Wu

A circularly polarized broadband low-cost reflectarray in Ku-band is presented using a novel single-layer subwavelength phase-shifting element. The proposed subwavelength element consists of the concentric split ring and the crossed bowtie. The linear reflected phase response curve with 360° phase coverage is obtained. For experimental verification, an array of 25 × 25 reflectarray prototype has been designed and manufactured by employing the angular rotation technique. The measurements are in good agreement with the simulations. The measured gain at the center frequency of 12.5 GHz is 26.6 dBi, corresponding to the aperture efficiency of 52.5%, and the 1 dB gain bandwidth is 26.4%.


2014 ◽  
Vol 13 ◽  
pp. 891-894 ◽  
Author(s):  
A. Vosoogh ◽  
K. Keyghobad ◽  
A. Khaleghi ◽  
S. Mansouri

2017 ◽  
Vol 16 ◽  
pp. 2106-2109 ◽  
Author(s):  
Ruyuan Deng ◽  
Shenheng Xu ◽  
Fan Yang ◽  
Maokun Li

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yadgar I. Abdulkarim ◽  
Halgurd N. Awl ◽  
Fahmi F. Muhammadsharif ◽  
Muharrem Karaaslan ◽  
Rashad H. Mahmud ◽  
...  

Improvement in the antenna gain is usually achieved at the expense of bandwidth and vice versa. This is where the realization of this enhancement can be made through compromising the antenna profile. In this work, we propose a new design of incorporating periodic metasurface array to enhance the bandwidth and gain while keeping the antenna to a low-profile scheme. The proposed antenna was simulated and fabricated in order to validate the results in the operating frequency range from 10 MHz to 43.5 GHz. Computer simulation technology (CST) microwave studio software was used to design and simulate the proposed antenna, while LPKF prototyping PCB machine was utilized to fabricate the antenna. Results showed that the antenna generated a gain and bandwidth of 14.2 dB and 2.13 GHz, respectively. Following the good agreement between the numerical and measurement results, it is believed that the proposed antenna can be potentially attractive for the application of satellite communications in Ku-band electromagnetic wave.


2019 ◽  
Vol 12 (5) ◽  
pp. 409-418
Author(s):  
M. Abdollahvand ◽  
K. Forooraghi ◽  
Jose A. Encinar ◽  
Z. Atlasbaf ◽  
E. Martinez-de-Rioja

AbstractA novel dual-polarization, single-layer reflectarray has been designed and manufactured to operate at receive (20 GHz) and transmit (30 GHz) frequencies for Ka-band terminal antennas. The reflectarray unit cell is composed of several types of resonant elements printed on the upper side of a conductor-backed substrate, which are designed to produce a collimated beam at 20 and 30 GHz in dual polarization. Cross-shaped loops are used to provide the required phases at 20 GHz, while crossed dipoles and modified truncated rings are used to control the phasing at 30 GHz. The resonant lengths of the proposed elements have been adjusted cell by cell by means of a two-dimensional interpolation method to achieve the required phase shift at each frequency. Two different feeds have been used to illuminate the reflectarray at 20 and 30 GHz. The measured gain is 28.02 dBi at 20 GHz and 32.14 dBi at 30 GHz. The measurement results show that the radiation patterns of the designed single-layer reflectarray antenna are in good agreement with those achieved from the simulations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hang Wong ◽  
Kai Xu Wang ◽  
Laure Huitema ◽  
Aurelian Crunteanu

Abstract Active meta polarizers based on phase-change materials have recently led to emerging developments in terahertz devices and systems for imaging, security, and high-speed communications. Existing technologies of adaptive control of meta polarizers are limited to the complexity of external stimuli. Here, we introduce an active terahertz polarizer consisting of a single layer of large array patterns of vanadium dioxide material integrated with metallic patch matrix to dynamically reconfigure the polarization of the terahertz waves. The proposed active polarizer is simple in structure and can independently manipulate the polarization of the incident THz waves in two orthogonal directions. In addition, the device can also be performing as a highly efficient reflector at the same frequencies. We demonstrate that efficient and fast polarization changes of THz waves can be achieved over a wide operating bandwidth. Compared with other active polarizers using mechanical, optical and thermal controls, it can be conveniently manipulated with DC bias without any external actuators, intense laser source or heater. Therefore, with the advantages of high efficiency, compact size, low loss, low cost and fast response, the proposed polarizer can be highly integrative and practical to operate within adaptive terahertz circuits and systems.


Sign in / Sign up

Export Citation Format

Share Document