Bilayer split-ring chiral metamaterial based reconfigurable antenna for polarization conversion

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 317-320
Author(s):  
Saeid Karamzadeh ◽  
Vahid Rafiei ◽  
Hasan Saygin

Abstract In this work circularly polarization diversity has been achieved by utilizing two Schottky diodes on low profile cavity-backed substrate integrated waveguide (CBSIW). In comparison with other studies in the literature, the size of antenna has been reduced to 0.54λg × 0.76λg by helping a 50-Ohm coaxial feed line. The impedance bandwidth, axial ratio bandwidth and antenna gain are improved to 10.02 %, 5.2 % and 7.68dBi, respectively. In addition, the proposed antenna can generate either a left-hand circularly polarized (LHCP) or a right-hand circularly polarized (RHCP) radiation. The developed antenna was fabricated and tested and the achieved results were in good agreement with the simulated one.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huakang Chen ◽  
Yu Shao ◽  
Zhangjian He ◽  
Changhong Zhang ◽  
Zhizhong Zhang

A 2 × 2 wideband circularly polarized (CP) antenna array operating at millimeter wave (mmWave) band is presented. The array element is a wideband CP Archimedean spiral radiator with special-shaped ring slot. The elements are fed by an unequal amplitude (UA) feeding network based on a microstrip line (MSL) power divider. The side lobe level is improved by this UA feeding network. In addition, a cross slot is employed to isolate the elements for decoupling. A prototype is fabricated, and the measured results show that the proposed array achieves an impedance bandwidth (IBW) of 6.31 GHz (22.5% referring to 28 GHz) and an axial ratio bandwidth (ARBW) of 7.32 GHz (26.1% referring to 28 GHz). The peak gain of the proposed array is 11.3 dBic, and the gain is greater than 9.3 dBic within the whole desired band (from 25 GHz to 31 GHz). The proposed array consists of only one substrate layer and can be built by the conventional printed circuit board technology. Attributed to the characteristics of wide bandwidth, simple structure, low profile, and low cost, the proposed antenna array has a great potential in mmWave wireless communications.


2019 ◽  
Vol 12 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Shilpee Patil ◽  
Binod Kumar Kanaujia

AbstractIn this paper, an electromagnetic band gap (EBG) metasurface (MS) superstrate-based circularly polarized antenna for the WiMAX (3.5 GHz) band is proposed. The proposed structure comprises a 2 × 2 slot-loaded rectangular patch MS array that can be perceived as a polarization-dependent EBG MS superstrate. Furthermore, to achieve circular polarization, the proposed antenna has an inclined coupling slot onto the ground with a conventional coplanar waveguide feed line. The proposed antenna has a compact structure with a low profile of 0.037λ0 (λ0 stands for the free-space wavelength at 3.48 GHz) and a ground size of 30 × 30 mm2. The measured results show that the −10 dB impedance bandwidth for the proposed antenna is 34.6% and the 3-dB axial ratio (AR) bandwidth is 6.8% with a peak gain of 3.91 dBi in the desired operating band. Good agreement between the simulated and the measured results verifies the performance of the proposed antenna.


2018 ◽  
Vol 11 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
R. L. Yadava

AbstractThis paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.


2017 ◽  
Vol 9 (7) ◽  
pp. 1533-1540 ◽  
Author(s):  
Xi Chen ◽  
Zhen Wei ◽  
Dan Wu ◽  
Long Yang ◽  
Guang Fu

A compact three-dimensional (3D) circularly polarized (CP) microstrip antenna is presented in this paper. The antenna adopts three low-cost printed circuit boards to form an integrated and closed 3D structure, and the radiation patch and the feed patches are etched on the surface of that. A crossed slot is cut on the radiation patch to miniaturize the antenna, and triangular feed patches are introduced to increase the bandwidths. In addition, because of the utilization of a low-loss series feed line, the antenna has a high efficiency of more than 95%. A prototype of the antenna is measured to validate the method. The dimensions of the antenna is 0.064λ × 0.36λ (λ is the wavelength in free space at 1.2 GHz). The results indicate that the impedance bandwidth for voltage standing wave ratio ≤ 2 reaches 23%, and the bandwidth for axial ratio (AR) ≤ 3 dB reaches 10.1%. In the overlap band, the gains are > 4.5dBic. Additionally, the 3 dB beamwidth is more than 114°, and the beamwidth for AR ≤ 3 dB is more than 131° at 1.2 GHz.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5610
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

A broadband compact-sized planar four-port multiple-input–multiple-output (MIMO) antenna with polarization diversity is presented. The proposed dual circularly polarized (CP) MIMO antenna consists of four G-shaped monopole elements, two of which are left-hand CP and the other two are right-hand CP. A vertical line strip in the G-shaped radiating element acts in balancing the vertical and horizontal electric field components to obtain 90° phase difference between them for circular polarization. Also, an I-shaped strip is incorporated between the ground planes of the G-shaped antenna elements to obtain equal voltage level in the proposed MIMO configuration. The dual circular polarization mechanism of the proposed MIMO/diversity antenna is analysed from the vector current distributions. The impedance bandwidth (S11 ≤ –10 dB) of the MIMO antenna is 105.9% (4–13 GHz) and the 3 dB axial ratio bandwidth (ARBW) is 67.7% (4.2–8.5 GHz), which is suitable for C-band applications. The overall size of the MIMO antenna is 70 × 68 × 1.6 mm3, and the minimum isolation between the resonating elements is 18 dB. The envelope correlation coefficient is less than 0.25, and the peak gain within the resonating band is 6.4 dBi.


2020 ◽  
Vol 9 (1) ◽  
pp. 41-48
Author(s):  
P. M. Paul ◽  
K. Kandasamy ◽  
M. S. Sharawi

A compact multiband circularly polarized slot antenna is proposed here. An F-shaped microstrip feedline is used to excite the square slot antenna loaded with a U-shaped strip and a split ring resonator (SRR) to generate three circularly polarized bands at 1.5 GHz, 2.75 GHz and 3.16 GHz. A meandered slot is used in the feedline and the U-strip to improve the axial ratio bandwidth (ARBW). The meandered feedline excites the slot to produce resonance at 2.5 GHz. This resonance along with that of the F-shaped feed, loaded SRR and U-strip combine to give rise to three circularly polarized bands which can be tuned depending on the feed, SRR and U-strip dimensions. The orientation of the F-shaped feed decides the sense of polarization of the three circularly polarized bands of the proposed antenna. The proposed antenna is fabricated on a substrate of FR4 material with dimensions 50 x 50 x 1.56 mm3. The antenna is prototyped and measured in terms of impedance bandwidth, ARBW, gain and efficiency. The simulated and measured results show reasonably good agreement.


A compact Circular polarized rectangular patch antenna has been designed for the Deep Space applications in the Ku band with an operating frequency of 13.15GHz. The patch has been truncated at the diagonal corners and two L shaped slots are been etched in the patch to get the circular polarization. A 50Ω coaxial cable has been used to excite the antenna. The overall dimension of the antenna is 13mm×13mm×0.508mm which is 0.65λ×0.65λ making the proposed antenna a compact one. The Proposed antenna is having an impedance bandwidth of 25GHz ranging from 13GHz to 13.25GHz with a gain of 7.82dB at the operating frequency of 13.15GHz. The axial ratio of the antenna at the operating frequency is 2.94dB which indicate the circular polarization. Low cost FR4 material is been used as the laminate base for the antenna which will act as the dielectric material.


2021 ◽  
Vol 36 (6) ◽  
pp. 747-754
Author(s):  
Rui Ma ◽  
Quanyuan Feng

This paper presents a new coplanar waveguide (CPW)-fed circularly polarized square slot antenna (CPSSA). The proposed antenna uses an inverted Z-shaped feedline protruded from the signal line of the feeding CPW. Circularly polarized (CP) radiation can be achieved by adequately inserting the arc-shaped grounded strip into the upper right corner of the square slot. The widened vertical tuning stub on the L-shaped grounded strip can improve impedance matching and axial ratio (AR) performance. The measured results indicate that the 10 dB impedance bandwidth is 620 MHz (652-1272 MHz), and the 3 dB axial ratio bandwidth is 320 MHz (840-1160 MHz), which has a broadband characteristic. In the range of the universal UHF RFID band, the measured peak gain is about 4.4 dBi. The proposed CPSSA uses low-cost FR4 material as the dielectric substrate. The overall size of the antenna is 119 × 119 × 0.5 mm3. The proposed antenna has a simple structure, easy processing, good performance, wide operating bandwidth, and dual circular polarization characteristic. It can be applied to the universal UHF RFID handheld reader environment.


Sign in / Sign up

Export Citation Format

Share Document