A compact, dual wide-band circularly polarized, modified square ring slot antenna for C and Ku band applications

2018 ◽  
Vol 11 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
R. L. Yadava

AbstractThis paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.

Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 343-351 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

Abstract A low profile wide slot antenna for dual band and dual sense circular polarization (CP) is proposed here and is simulated by using HFSS simulation software.The proposed antenna having a C shaped patch for dual band operation and a wide square slot etched on the ground with two strips for CP operation. In between radiating patch and ground plane, designed antenna has a layer of easily available dielectric (FR-4) material. Proposed antenna shows an impedance bandwidth of 13.8 % at 2.38 GHz of centre frequency and 9.7 % at 4.43 GHz of centre frequency for lower and upper band respectively. The 3-dB axial ratio (AR) bandwidths for lower and upper band are 18.8 % (at 2.44 GHz of centre frequency) and 13.3 % (at 4.29 GHz of centre frequency), respectively. The peak gain for the lower and upper band is found as 4.1 dBi and 3.3 dBi, respectively. A close agreement has been found between the simulated and the measured results.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 333-341 ◽  
Author(s):  
Qiang Chen ◽  
Hou Zhang ◽  
Lu-chun Yang ◽  
Bin-bin Li ◽  
Xue-liang Min

Abstract A design with wideband and circularly polarized radiation antenna from an open-slot antenna has been demonstrated in this paper. The proposed antenna, which consists of an open slot and an inverted-L strip feeding, provides a large bandwidth, which completely cover the Wimax (3.3–3.8 GHz) and WLAN (2.4–2.48 GHz) bands. The open slot is formed by an modified ground plane with a slit cut and monofilar spiral stubs employed, which fed by an asymmetrical inverted-L strip feedline using a via. As demonstrated, the CP operation was significantly improved by loading monofilar spiral stubs connected to the asymmetric feedline by means of a via. A parametric study of the key parameters is made and the mechanism for circular polarization is described. After optimization, the impedance bandwidth is approximately 3.78 GHz (2.12 to 5.9 GHz) and the 3 dB axial ratio bandwidth is approximately 2.75 GHz (2.2 to 4.95 GHz), which represent fractional bandwidths of approximately 94.3 % and 76.9 %, respectively.


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 181-188
Author(s):  
Chien-Yuan Pan ◽  
Chum-Chieh Su ◽  
Wei-Lin Yang

Abstract A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894–1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910–970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.


2019 ◽  
Vol 8 (4) ◽  
pp. 2133-2139

A miniaturized microstrip-fed, wideband and circularly polarized L-shaped slot antenna is designed for ultra-wideband applications. To realize L-shaped slot antenna with wide impedance bandwidth, a stub of size 10.7 mm2 is added to a rectangular shaped slot of the ground plane. The position of the feedline is optimized to attain wide circular polarization bandwidth. The proposed antenna size is very small i.e., 25×25 mm2 . A prototype of the design is fabricated and measured. The axial ratio bandwidth (ARBW< 3 dB) of 2.2 GHz (from 6.2 GHz to 8.4 GHz) and the impedance bandwidth (S11<-10 dB) of 7.4 GHz (from 2.5 GHz to 9.9 GHz) is achieved by the proposed design. Moreover, the antenna achieves a stable radiation pattern and a gain of more than 2.8 dBi over the complete ARBW. The advantages of the structure are miniaturized design, having wide impedance bandwidth, and broad ARBW


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Vijay Kumar Pandey ◽  
Binod Kumar Kanaujia ◽  
Anil Kumar Pandey

Abstract A simple and compact circularly polarized broadband circular slot antenna is proposed for WLAN/WiMAX/DBS applications. The main objective of this work is to design a microstrip line fed broadband circularly polarized antenna that is achieved by introducing an asymmetric perturbation over the circular slot onto the ground plane. A broad axial ratio bandwidth is achieved by using a small circular segment cut into the circular slotted ground and by adding a short stub on the feedline. To achieve a broad impedance bandwidth, a horizontal strip onto the slotted ground is placed just above the feed line on the opposite side. The proposed antenna is fabricated with an overall dimension of 20 × 20 × 1.6 mm3 (0.34λ o × 0.34λ o × 0.03λ o, where λ o represents the free-space wavelength at the center operating frequency). It is found that the impedance bandwidth of 75.82% ranges from 3.21 to 7.13 GHz and the 3 dB axial ratio (AR) bandwidth reaches 54.27% from 3.8 to 6.6 GHz. Throughout this paper, the improvement and validation process of the proposed antenna outcomes to accomplish desired characteristics are discussed.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


Author(s):  
Sonal Gupta ◽  
Shilpee Patil ◽  
Chhaya Dalela ◽  
Binod Kumar Kanaujia

Abstract Design of single-feed circularly polarized (CP) microstrip antenna is proposed in this article. The design employs the concept of E-shape patch with inclined fractal defected ground structure (IFDGS), which can improve the impedance bandwidth, gain, and axial ratio (AR) bandwidth. The excellent enhanced impedance bandwidth, axial ratio bandwidth, and gain are achieved by an inclined E-shaped fractal etched on the ground plane. The parameter studies of the E-shaped IFDGS are given to illustrate the way to obtain CP radiation. The third iterative IFDGS is fabricated on easily available FR4 substrate with a size of 0.494 λ0 × 0.494 λ0 × 0.019 λ0 (λ0 is the wavelength in free space at 3.624 GHz). The measured results verify the simulated results and show good agreement. The proposed antenna shows an impedance bandwidth of 12.7% at a centre frequency of 3.47 GHz and 3-dB AR bandwidth for this band is 2.39% at a centre frequency of 3.626 GHz. The measured peak gain for the proposed antenna is found as 8.1 dBi. The proposed antenna can be suitable for mobile WIMAX operation (IEEE 802.16e-2005 standard), wireless communication in CA-band and FCC.


2014 ◽  
Vol 513-517 ◽  
pp. 3103-3106
Author(s):  
Li Zhu ◽  
Xiang Jun Gao ◽  
Guo Cheng Wu ◽  
Guang Ming Wang

In this paper, a novel broadband circularly polarized (CP) slot antenna is proposed and fabricated, in which the perturbation configuration with two quarter annular rings fabricated cornerways in the square slot is designed and a simple Photonic-bandgap (PBG) structure is employed. Through simulating and testing, the broad impedance bandwidth of 81.5%(VSWR<2.0) and the 3dB axial ratio (AR) bandwidth of 48.2% are achieved respectively. This slot antenna will be widely utilized in communication field. These instructions give you basic guidelines for preparing papers for conference proceedings.


Sign in / Sign up

Export Citation Format

Share Document