scholarly journals A Novel Ensemble Wind Speed Forecasting Model in the Longdong Area of Loess Plateau in China

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Tonglin Fu ◽  
Chen Wang

Energy is the lifeline and the base of development of social economy in every country or area. However, with the increasing depletion of fossil energy, it is imperative for business managers and government policy makers to seek and utilize new energy resources for keeping the national economy development sustained, rapid, and healthy. As a new energy resource, wind energy is developing with a high speed in the world for the reasons that it is an abundant natural resource with the characteristics of renewable, low cost, and no pollution. But in reality, forecasting wind speed accurately is continuously a challenging subject in the field of the wind energy development for a long time. In this paper, a novel ensemble wind speed forecasting model based on machine leaning models and hybrid models with data preprocessing technology is proposed to forecast the wind speed effectively in the Longdong area of Loess Plateau in China; numerical results show that the ensemble model has better precision, adaptability, and robustness.

2018 ◽  
Vol 10 (11) ◽  
pp. 3913 ◽  
Author(s):  
Tonglin Fu ◽  
Chen Wang

Wind power has the most potential for clean and renewable energy development. Wind power not only effectively solves the problem of energy shortages, but also reduces air pollution. In recent years, wind speed time series analyses have increasingly become a concern of administrators and power grid dispatchers searching for a reasonable way to reduce the operating cost of wind farms. However, analyzing wind speed in detail has become a difficult task, because the traditional models sometimes fail to capture data features due to the randomness and intermittency of wind speed. In order to analyze wind speed series in detail, in this paper, an effective and practical analysis system is studied and developed, which includes a data analysis module, a data preprocessing module, a parameter optimization module, and a wind speed forecasting module. Numerical results show that the wind time series analysis system can not only assess wind energy resources of a wind farm, but also master future changes of wind speed, and can be an effective tool for wind farm management and decision-making.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hashwini Lalchand Thadani ◽  
Fadia Dyni Zaaba ◽  
Muhammad Raimi Mohammad Shahrizal ◽  
Arjun Singh Jaj A. Jaspal Singh Jaj ◽  
Yun Ii Go

PurposeThis paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.Design/methodology/approachThis project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.FindingsComputational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.Originality/valueWind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1416
Author(s):  
Mario López ◽  
Noel Rodríguez-Fuertes ◽  
Rodrigo Carballo

This work assesses for the first time the offshore wind energy resource in Asturias, a region in the North of Spain. Numerical model and observational databases are used to characterize the gross wind energy resource at different points throughout the area of study. The production of several wind turbines is then forecasted on the basis of each technology power curve and the wind speed distributions. The results are mapped for a better interpretation and discussion.


2014 ◽  
Vol 986-987 ◽  
pp. 1291-1295
Author(s):  
Chang Wei Ji ◽  
Min Li

In the high altitude, solar energy, biomass energy and wind energy are widely available and renewable energy sources. It will improve the region's living levels at high altitude and the ecological environment when developed efficiently and in low cost. Making full use of renewable natural resources is of great value and significance to sustain the development of high-altitude areas of the economy. This paper is a kind of research and study, which based on new energy and aims at making full use of solar energy, wind energy, biomass energy complementary relationship and physical changes between planting and breeding to improve the renewable energy industry, integrated, modular for the high altitude area residents gathered .


Author(s):  
Gong Li ◽  
Jing Shi ◽  
Junyi Zhou

Wind energy has been the world’s fastest growing source of clean and renewable energy in the past decade. One of the fundamental difficulties faced by power system operators, however, is the unpredictability and variability of wind power generation, which is closely connected with the continuous fluctuations of the wind resource. Good short-term wind speed forecasting methods and techniques are urgently needed since it is important for wind energy conversion systems in terms of the relevant issues associated with the dynamic control of the wind turbine and the integration of wind energy into the power system. This paper proposes the application of Bayesian Model Averaging (BMA) method in combining the one-hour-ahead short-term wind speed forecasts from different statistical models. Based on the hourly wind speed observations from one representative site within North Dakota, four statistical models are built and the corresponding forecast time series are obtained. These data are then analyzed by using BMA method. The goodness-of-fit test results show that the BMA method is superior to its component models by providing a more reliable and accurate description of the total predictive uncertainty than the original elements, leading to a sharper probability density function for the probabilistic wind speed predictions.


2016 ◽  
Vol 835 ◽  
pp. 749-752
Author(s):  
Yuttachai Keawsuntia

Wind energy is an important alternative energy resource because of it clean, does not cause pollution and it can be used as replacement of a fossil fuel energy. Utilization of the wind energy, the wind speed data has to be analyzed to make sure before use it. In this article is to present the wind speed data analysis by using Weibull distribution method. Wind speed data from the meteorological station at Pakchong district, Nakhonratchasima province, Thailand was used as the case study. The results show that this area has wind speed about 2.5 to 3.5 m/s. The average wind power density was 17.513 W/m2 and the total wind energy was 153.9819 kW·hr/m2 per year. This wind potential of this area can be used for water pumping and electricity generating for use in a household.


Sign in / Sign up

Export Citation Format

Share Document