Wind Potential Assessment for the Utilization from Wind Energy in the Household Level: A Case Study of Nakhonratchasima Thailand

2016 ◽  
Vol 835 ◽  
pp. 749-752
Author(s):  
Yuttachai Keawsuntia

Wind energy is an important alternative energy resource because of it clean, does not cause pollution and it can be used as replacement of a fossil fuel energy. Utilization of the wind energy, the wind speed data has to be analyzed to make sure before use it. In this article is to present the wind speed data analysis by using Weibull distribution method. Wind speed data from the meteorological station at Pakchong district, Nakhonratchasima province, Thailand was used as the case study. The results show that this area has wind speed about 2.5 to 3.5 m/s. The average wind power density was 17.513 W/m2 and the total wind energy was 153.9819 kW·hr/m2 per year. This wind potential of this area can be used for water pumping and electricity generating for use in a household.

2008 ◽  
Vol 32 (5) ◽  
pp. 449-458 ◽  
Author(s):  
H. Nfaoui ◽  
H. Essiarab ◽  
A. Sayigh

Morocco depends on 85% foreign sources of its energy supply. The oil invoice accounts for nearly 22.3% income from exports. In Morocco, the use of wind energy began before 1930, through the importation of windmills from USA by the French colony, to pump water for livestock and population in the country. An estimated 1000 of these units were in use in Morocco [1]. Following the rising price of oil after the first oil-price shock in the early 1970s, the days of cheap and plentiful petroleum were drawing to an end. Morocco began to promote and develop renewable energy mainly solar energy. Wind energy is the most promising alternative energy resource in Morocco because of its good geographic location (3446 km of coast, Straits of Gibraltar, Rif and Atlas Mountain at 4167 metres and the Taza corridor) which permits Morocco to have available the largest wind potential in the North Africa. At 10 m, the annual mean wind speed can reach 11m/s in the Tetouan region and 8 m/s in the Dakhla site. The Moroccan wind potential is estimated at 21,000MW. In the framework of diversification of national energy resources, various actions have been taken for the use of wind energy as a national energy resource. It is mainly about: Since wind energy is economic on windy sites and the capital costs are continue to decline with the move to larger wind turbines [2,3], the Moroccan government has set a target of achieving 20% of its electricity supply from wind energy by 2020. It has started to pay attention to developing its indigenous wind energy resources and has encouraged wind technology transfer from other countries. On top of that, wind energy could have a significant and beneficial impact on the environment, particularly with regard to the greenhouse effect. - Diversifying the actors, both public and private, - Concluding consessional contracts between the National Office of Electricity (ONE) and private electricity producers using wind energy to satisfy theirs own needs, - Increasing the autoproduction threshold to 50MW with the aim of installing 1000MW by modifying the laws governing the electricity production.


Wind energy is a promising alternativefor renewable source of energy pursued world-wide to reduce carbon emissions for a green future. The prediction of wind speed is a challenging subject and plays an instrumental role in development of wind power systems (particularly grid connected renewable energy systems where predicting wind speed facilitates manipulation of the load on the grid). Modern machine learning techniques including neural networks have been widely utilized for this purpose. Literature indicates availability of several models for estimation of the wind speed one hour ahead and the hourly wind speed data profile one day ahead. This paper considers the prediction of wind energy as a univariate time series (UVT) prediction problem and employs major prediction algorithms including the K-Nearest Neighbors (kNN), Random Forest (RF), Support Vector Regression (SVR), Holt-Winter and ARIMA method. Forecasting a univariate time series depends only on past wind speed data values, rather than use of external data attributes like wind direction or weather forecast for prediction algorithm. In the present study (as a case-study), 13 years of hourly average wind speed data (of the period 1970-1982) of Yanbu, Saudi Arabia has been utilized to evaluate the performance of selected algorithms. Yanbu is an industrial city that plays a major role in the economy of Saudi Arabia. The findings showed that SVR, RF and ARIMA methods exhibit a better forecastingperformance in relation to four evaluation parameters of Mean Absolute Percentage Error(MAPE),Symmetric Mean Absolute Percentage Error (sMAPE),Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE).


Author(s):  
Kuanysh Mussilimov ◽  
Akhmet Ibraev ◽  
Waldemar Wójcik

Wind power is one of the three main renewable energy sources, along with solar and hydropower, which are widely used to produce electricity worldwide. As an energy resource, wind is widespread and can provide electricity to much of the world, but it is both intermittent and unpredictable, making it difficult to rely on wind power alone. However, when used in combination with other types of production or in combination with energy storage, wind can make a valuable contribution to the global energy balance. Over the past few decades, wind power has emerged in a number of countries as a separate energy sector that has successfully competed with conventional energy. Attention is paid to wind power plants (WT) as part of distribution and transmission networks. In this regard, an urgent scientific and technical task is the efficient use of wind potential, which is not only to improve aerodynamic characteristics WT, but also to increase productivity WT as a whole. This article presents the type of wind turbines, among the possible applications and very promising is the wind turbine Bolotov (WRTB), which by its technical characteristics surpasses the traditional propeller and other installations using wind energy in the production of electrical energy. The increase (WEUF - wind energy utilization factor) in all modes of operation WT by improving various methods of automatic control is relevant, and the proposed work is devoted to this issue.


Author(s):  
N. Goudarzi ◽  
W. D. Zhu ◽  
R. Delgado ◽  
A. St. Pé

The statistical data of five years wind speed measurements at University of Maryland, Baltimore County are used to find out the availability of wind energy resource for power generation. Wind speeds are measured at an approximately 30 meters above the ground; the monthly and yearly mean wind speeds are calculated and evaluated by using the Weibull distribution function. The annual values of k (dimensionless Weibull shape parameter) ranged from 1.78 to 1.99 with a five-year mean value of 1.87. The annual values of c (Weibull scale parameter) ranged from 3.15 to 3.60 with a five-year mean value of 3.28. The results show the highest and lowest wind power potential occurs in February and July, respectively. While this site is not appropriate for large-scale power generation, this study shows the availability of enough wind potential for non-grid connected electrical and mechanical applications. Different residential wind harvesting technologies in urban areas have been studied and more promising ones are introduced as solutions to provide larger-scale power generation at this site with a low annual mean wind speed.


2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


2021 ◽  
Vol 15 (1) ◽  
pp. 613-626
Author(s):  
Shahab S. Band ◽  
Sayed M. Bateni ◽  
Mansour Almazroui ◽  
Shahin Sajjadi ◽  
Kwok-wing Chau ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1416
Author(s):  
Mario López ◽  
Noel Rodríguez-Fuertes ◽  
Rodrigo Carballo

This work assesses for the first time the offshore wind energy resource in Asturias, a region in the North of Spain. Numerical model and observational databases are used to characterize the gross wind energy resource at different points throughout the area of study. The production of several wind turbines is then forecasted on the basis of each technology power curve and the wind speed distributions. The results are mapped for a better interpretation and discussion.


Sign in / Sign up

Export Citation Format

Share Document