scholarly journals A Review of the Torsional Split Hopkinson Bar

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xiao Yu ◽  
Li Chen ◽  
Qin Fang ◽  
Xiquan Jiang ◽  
Yongkang Zhou

Mechanical behavior of materials at medium and high strain rates (101∼104 s−1) is the foundation of developing mechanical theories, building material models, and promoting engineering design and construction. The torsional split Hopkinson bar (TSHB) is an effective experimental technique for measuring the pure shear mechanical properties of materials at high strain rates. In this study, the state-of-the-art in TSHB experimental technique is presented. Five typical types of TSHB loading mechanisms, i.e., prestored energy loading, explosive loading, direct impact loading, flywheel loading, and electromagnetic loading, were systematically reviewed. The TSHB fundamentals were outlined, which include elementary components, basic assumptions, working principles, the pulse shaping technique, specimen design, and the single-pulse loading technique. In addition, the combined loading and high/low temperature experimental techniques, which were developed based on TSHB, were also discussed in detail. Nearly all necessary elements for conducting a TSHB experiment and analyzing the experimental data were provided. Some research directions should be further pursued, such as extending the range of applicable materials and developing the combined loading techniques.

2018 ◽  
Vol 183 ◽  
pp. 02021 ◽  
Author(s):  
Ahmed Elmahdy ◽  
Patricia Verleysen

The design of sample geometries and the measurement of small strains are considered the main challenges when testing composite materials at high strain rates using the split Hopkinson bar technique. The aim of this paper is to assess two types of tensile sample geometries, namely dog-bone and straight strip, in order to study the tensile behaviour of basalt fibre reinforced composites at high strain rates using the split Hopkinson bar technique. 2D Digital image correlation technique was used to study the distribution of the strain fields within the gauge section at quasi-static and dynamic strain rates. Results showed that for the current experiments and the proposed clamping techniques, both sample geometries fulfilled the requirements of a valid split Hopkinson test, and achieved uniform strain fields within the gauge section. However, classical Hopkinson analysis tends to overestimate the actual strains in the gauge section for both geometries. It is, therefore, important to use a local deformation measurement when using these 2 geometries with the proposed clamping technique.


1972 ◽  
Vol 39 (3) ◽  
pp. 651-656 ◽  
Author(s):  
J. Duffy ◽  
R. H. Hawley ◽  
R. A. Frantz

Experiments are described in which specimens of lead are strained in torsion at high rates using the split Hopkinson bar and explosive loading. Tests were conducted at nominal strain rates of 1000 sec−1 and 5000 sec−1 as well as at “static” rates. Values of the flow stress correspond closely with those obtained in axial tests by other investigators at corresponding rates.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 496
Author(s):  
Reem Abdul-Rahman ◽  
Dominique Saletti ◽  
Pascal Forquin

A new experimental technique has been developed to investigate the confined shear behavior of concrete under dynamic conditions. The technique is based on the ‘Punch through shear test’ and consists in pre-stressing a concrete sample prior to testing it under shear. The pre-confinement is applied by means of a metallic cell instrumented with gages to register the stresses during the test; it consists in deforming the cell with a compressive load and then inserting the specimen into the cell. When the load is released, the cell applies a confinement to the sample. Two notches are performed from each side of the specimen and a displacement is applied to the central part in order to produce shear inside the vertical ligament. Dynamics tests are done with the Split Hopkinson Bar setup where a striker, an incident and two output bars are used. Two sets of specimens have been tested, saturated and dry concrete.


2013 ◽  
Vol 631-632 ◽  
pp. 458-462 ◽  
Author(s):  
Peng Duo Zhao ◽  
Yu Wang ◽  
Jian Ye Du ◽  
Lei Zhang ◽  
Zhi Peng Du ◽  
...  

The strain rate sensitivity of neoprene is characterized using a modified split Hopkinson pressure bar (SHPB) system at intermediate (50 s-1, 100 s-1) and high (500 s-1, 1000 s-1) strain rates. We used two quartz piezoelectric force transducers that were sandwiched between the specimen and experimental bars respectively to directly measure the weak wave signals. A laser gap gage was employed to monitor the deformation of the sample directly. Three kinds of neoprene rubbers (Shore hardness: SHA60, SHA65, and SHA70) were tested using the modified split Hopkinson pressure bar. Experimental results show that the modified apparatus is effective and reliable for determining the compressive stress-strain responses of neoprene at intermediate and high strain rates.


2021 ◽  
Vol 250 ◽  
pp. 02032
Author(s):  
Bhaskar Ramagiri ◽  
Chandra Sekher Yerramalli

Torsion Split Hopkinson Bar (TSHB) is widely used in the dynamic shear characterization of material under pure shear loading. In TSHB, tubular specimens with either circular or hexagonal flanges are used. The specimens with circular flanges are generally bonded using adhesive to the incident and transmission bars. The specimens with hexagonal flanges are gripped into the hexagonal holders that are fixed onto incident and transmission bars. In the current study, numerical simulations are carried out to see the effect of gripping arrangements on the dynamic shear characterization quality. Numerical experiments with three gripping configurations are studied—the first gripping configuration with a direct bond (numerically-tie) between specimen and bars. The second configuration with the specimen gripped by hexagonal holders fixed to bars. The third configuration with specimen directly gripped into the incident and transmission bars having hexagonal slots.


Sign in / Sign up

Export Citation Format

Share Document