scholarly journals Gene Doping with Peroxisome-Proliferator-Activated Receptor Beta/Delta Agonists Alters Immunity but Exercise Training Mitigates the Detection of Effects in Blood Samples

2021 ◽  
Vol 22 (21) ◽  
pp. 11497
Author(s):  
Brigitte Sibille ◽  
Isabelle Mothe-Satney ◽  
Gwenaëlle Le Menn ◽  
Doriane Lepouse ◽  
Sébastien Le Garf ◽  
...  

Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.

2007 ◽  
Vol 176 (4) ◽  
pp. i9-i9
Author(s):  
Shannon E. Dunn ◽  
Shalina S. Ousman ◽  
Raymond A. Sobel ◽  
Luis Zuniga ◽  
Sergio E. Baranzini ◽  
...  

2019 ◽  
Author(s):  
Lauren A. Callender ◽  
Johannes Schroth ◽  
Elizabeth C. Carroll ◽  
Lisa E.L. Romano ◽  
Eleanor Hendy ◽  
...  

Introductory paragraphGATA binding protein 3 (GATA3) has traditionally been regarded as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper (Th) 2 cells. However, increasing evidence shows that GATA3 is involved in a myriad of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. We show here a previously unknown mechanism utilized by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the binding of GATA3, AMP-activated protein kinase (AMPK), peroxisome-proliferator-activated receptor γ co-activator-1α (PGC1α), nuclear factor erythroid 2-related factor 2 (NRF2) and superoxide dismutase 3 (SOD3) to the DNA damage repair (DDR) component ATR. These findings extend the pleotropic nature of GATA3 and highlight the potential for GATA3-targeted cell manipulation for clinical interventions.


Lupus ◽  
2019 ◽  
Vol 28 (8) ◽  
pp. 1007-1012
Author(s):  
H Dai ◽  
V C Kyttaris

We have previously reported that IL-23 receptor deficiency in MRL. lpr mice ameliorates lupus by altering the balance of pro- and anti-inflammatory cytokines in secondary lymphoid organs. As IL-23 may also impact thymic selection, we evaluated the effect of IL-23 on thymic T cell development in lupus-prone mice. We generated IL-23p19-deficient MRL. lpr mice and harvested their thymus at 8 weeks of age. We found that the late stage double negative DN4 population was increased in IL-23p19–/– MRL. lpr mice when compared to IL-23p19+/+ MRL. lpr mice. Despite this, mature thymocytes (CD24–TCRβ+) were decreased by more than 50% in the IL-23p19-deficient mice versus wild-type controls. This was associated with a decrease in the generation of CD8+ T cells, possibly through downregulation of the IL-7 receptor. CD8+ T cells were not only fewer in numbers but also had decreased expression of the migration-related receptors CD44 and CD62L in the thymus and spleens of IL-23p19-deficient versus wild-type mice. We propose that IL-23 promotes the development of lupus-like autoimmunity not only through T cell polarization and cytokine production in the peripheral lymphoid organs but also by influencing T cell thymic development.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Madison Schank ◽  
Juan Zhao ◽  
Ling Wang ◽  
Zhengke Li ◽  
Dechao Cao ◽  
...  

AbstractTelomere erosion and mitochondrial dysfunction are prominent features of aging cells with progressive declines of cellular functions. Whether telomere injury induces mitochondrial dysfunction in human T lymphocytes, the major component of adaptive host immunity against infection and malignancy, remains unclear. We have recently shown that disruption of telomere integrity by KML001, a telomere-targeting drug, induces T cell senescence and apoptosis via the telomeric DNA damage response (DDR). In this study, we used KML001 to further investigate the role and mechanism of telomere injury in mitochondrial dysregulation in aging T cells. We demonstrate that targeting telomeres by KML001 induces mitochondrial dysfunction, as evidenced by increased mitochondrial swelling and decreased mitochondrial membrane potential, oxidative phosphorylation, mitochondrial DNA content, mitochondrial respiration, oxygen consumption, glycolysis, and ATP energy production. Mechanistically, we found that the KML001-induced telomeric DDR activated p53 signaling, which in turn repressed the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1), leading to T cell mitochondrial dysfunction. These results, forging a direct link between telomeric and mitochondrial biology, shed new light on the human T cell aging network, and demonstrate that the p53-PGC-1α-NRF-1 axis contributes to mitochondrial dysfunction in the setting of telomeric DDR. This study suggests that targeting this axis may offer an alternative, novel approach to prevent telomere damage-mediated mitochondrial and T cell dysfunctions to combat a wide range of immune aging-associated human diseases.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 1113-1122 ◽  
Author(s):  
Andreas Beilhack ◽  
Stephan Schulz ◽  
Jeanette Baker ◽  
Georg F. Beilhack ◽  
Courtney B. Wieland ◽  
...  

AbstractGraft-versus-host disease (GVHD) is a major obstacle in allogeneic hematopoietic cell transplantation. Given the dynamic changes in immune cell subsets and tissue organization, which occur in GVHD, localization and timing of critical immunological events in vivo may reveal basic pathogenic mechanisms. To this end, we transplanted luciferase-labeled allogeneic splenocytes and monitored tissue distribution by in vivo bioluminescence imaging. High-resolution analyses showed initial proliferation of donor CD4+ T cells followed by CD8+ T cells in secondary lymphoid organs with subsequent homing to the intestines, liver, and skin. Transplantation of purified naive T cells caused GVHD that was initiated in secondary lymphoid organs followed by target organ manifestation in gut, liver, and skin. In contrast, transplanted CD4+ effector memory T (TEM) cells did not proliferate in secondary lymphoid organs in vivo and despite their in vitro alloreactivity in mixed leukocyte reaction (MLR) assays did not cause acute GVHD. These findings underline the potential of T-cell subsets with defined trafficking patterns for immune reconstitution without the risk of GVHD.


2001 ◽  
Vol 193 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Shigeyuki Mori ◽  
Hideki Nakano ◽  
Kentaro Aritomi ◽  
Chrong-Reen Wang ◽  
Michael D. Gunn ◽  
...  

The paucity of lymph node T cells (plt) mutation leads to a loss of CCL21 and CCL19 expression in secondary lymphoid organs. plt mice have defects in the migration of naive T cells and activated dendritic cells into the T cell zones of lymphoid organs, suggesting that they would have defects in T cell immune responses. We now demonstrate T cell responses in plt mice are delayed but ultimately enhanced. Responses to contact sensitization are decreased at day 2 after priming but increased at day 6. After subcutaneous immunization, antigen-specific T cell proliferation and cytokine production in plt mice are increased and remain markedly elevated for at least 8 wk. Compared with wild-type mice, a proportion of T cell response in plt mice are shifted to the spleen, and prior splenectomy reduces the T cell response in draining lymph nodes. After immunization of plt mice, T cells and dendritic cells colocalize in the superficial cortex of lymph nodes and in splenic bridging channels, but not in T cell zones. These results demonstrate that plt mice mount robust T cell responses despite the failure of naive T cells and activated dendritic cells to enter the thymus dependent areas of secondary lymphoid organs.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2919-2928 ◽  
Author(s):  
Andreas Beilhack ◽  
Stephan Schulz ◽  
Jeanette Baker ◽  
Georg F. Beilhack ◽  
Ryosei Nishimura ◽  
...  

In acute graft-versus-host disease (aGVHD), donor T cells attack the recipient's gastrointestinal tract, liver, and skin. We hypothesized that blocking access to distinct lymphoid priming sites may alter the specific organ tropism and prevent aGVHD development. In support of this initial hypothesis, we found that different secondary lymphoid organs (SLOs) imprint distinct homing receptor phenotypes on evolving alloreactive effector T cells in vivo. Yet preventing T-cell entry to specific SLOs through blocking monoclonal antibodies, or SLO ablation, did not alter aGVHD pathophysiology. Moreover, transfer of alloreactive effector T cells into conditioned secondary recipients targeted the intestines and liver, irrespective of their initial priming site. Thus, we demonstrate redundancy of SLOs at different anatomical sites in aGVHD initiation. Only prevention of T-cell entry to all SLOs could completely abrogate the onset of aGVHD.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Isabelle Mothe-Satney ◽  
Joseph Murdaca ◽  
Brigitte Sibille ◽  
Anne-Sophie Rousseau ◽  
Raphaëlle Squillace ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 476-476
Author(s):  
Gail Waltz ◽  
Arati Rajeevan ◽  
Andrea Dobbs ◽  
Elisabeth Denby ◽  
Craig Byersdorfer

Abstract Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a curative treatment for high-risk leukemia and multiple non-malignant hematologic disorders. However, the routine use of alloHSCT remains limited by acute graft-versus-host disease (GVHD), where activated donor T cells attack and destroy host tissues in the skin, gastrointestinal tract, and liver. We have previously shown that GVHD-causing T cells increase fat oxidation compared to both syngeneic and naive T cells. To explore this adaptation mechanistically, we studied the role of the transcription factor Peroxisome Proliferator Activated Receptor delta (PPAR-δ) in alloreactive donor T cells during the initiation of GVHD. By day 7 post-transplant, alloreactive T cells up-regulated PPAR-δ >5-fold compared to pre-transplant naive T cells (p<0.0001, Figure 1A). Furthermore, PPAR-δ was necessary for maximally severe GVHD, as major-MHC mismatched B6xDBA2 F1 mice receiving donor T cells deficient in exon 4 of PPAR-δ (PPAR-δ KO) survived longer than mice receiving wildtype (WT) T cells (p<0.007, Figure 1B). We next investigated the mechanism underlying this observed decrease in GVHD severity. As a transcription factor, PPAR-δ controls expression of multiple genes involved in fat transport and oxidation. To determine its role in alloreactive cells, RNA was collected from CD4 and CD8 T cells on day 7 post-transplant and levels of 8 known PPAR-δ targets quantitated by RT-PCR. These 8 targets were selected from a longer list of genes known to be up-regulated in alloreactive cells. Transcript levels of both carnitine palmitoyl transferase-1a (CPT-1a) and CD36 decreased in PPAR-δ KO CD8 T cells (Figure 2A), with decreases in CD36 protein levels confirmed by immunoblot (Figure 2B). Interestingly, changes in CPT-1a and CD36 did not occur in PPAR-δ KO CD4 T cells. To assess the functional consequence of these changes, day 7 WT versus PPAR-δ KO CD8 T cells were plated with 3H-palmitate and fat oxidation measured ex vivo. Consistent with a decrease in expression of genes involved in fat transport and mitochondrial fat import, fat oxidation decreased by >75% in PPAR-δ KO CD8 cells (Figure 2C). However, despite these decreases, the number of PPAR-δ KO CD8 T cells recovered on day 7 post-transplant was equivalent to WT T cells (Figure 3A, left panel). In contrast, PPAR-δ KO CD4 T cell numbers decreased by 30% on day 7, despite equivalent levels of CD36 and CPT1a (Figure 3A, right panel). Finally, we addressed whether pharmacologic inhibition of PPAR-δ might also effectively mitigate GVHD. Administration of the PPAR-δ inhibitor GSK3787 on days 3-6 post-transplant substantially decreased the number of donor T cell recovered on day 7 (Figure 3B), with PPAR-δ impairment corroborated by a decrease in CPT1a gene transcription. However, instead of improving recipient health, GSK3787 treatment instead worsened weight loss and increased rates of post-transplant morbidity and mortality. From these data, we conclude that PPAR-δ is necessary in alloreactive T cells to cause maximally severe GVHD and that mechanistically, an absence of PPAR-δ impairs fat oxidation in CD8 T cells without impacting CD8 T cell numbers. In contrast, PPAR-δ deficiency decreases the number of CD4 T cells post-transplant, but does so without impacting CPT1a or CD36 levels, highlighting clear differences in metabolic reprogramming between CD4 and CD8 alloreactive cells. Finally, our data suggest that systemic inhibition of PPAR-δ post-transplant is not feasible given a sharp increase in toxicity. Future work will elucidate the mechanism of PPAR-δ in CD4 T cells, define the additional metabolic adaptations of CD8 cells which lack PPAR-δ, and determine if similar changes occur in human T cells. Together, these studies will test whether cellular inhibition of PPAR-δ represents a clinically-relevant, future therapy for GVHD. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 185 (11) ◽  
pp. 1909-1918 ◽  
Author(s):  
Jérôme Fayette ◽  
Bertrand Dubois ◽  
Stéphane Vandenabeele ◽  
Jean-Michel Bridon ◽  
Béatrice Vanbervliet ◽  
...  

Within T cell–rich areas of secondary lymphoid organs, interdigitating dendritic cells recruit antigen-specific T cells that then induce B cells to secrete Igs. This study investigates the possible role(s) of dendritic cells in the regulation of human B cell responses. In the absence of exogenous cytokines, in vitro generated dendritic cells (referred to as Dendritic Langerhans cells, D-Lc) induced surface IgA expression on ∼10% of CD40-activated naive sIgD+ B cells. In the presence of IL-10 and TGF-β, a combination of cytokines previously identified for its capacity to induce IgA switch, D-Lc strongly potentiated the induction of sIgA on CD40-activated naive B cells from 5% to 40–50%. D-Lc alone did not induce the secretion of IgA by CD40-activated naive B cells, which required further addition of IL-10. Furthermore, D-Lc skewed towards the IgA isotype at the expense of IgG, the Ig production of CD40-activated naive B cells cultured in the presence of IL-10 and TGF-β. Importantly, under these culture conditions, both IgA1 and IgA2 were detected. In the presence of IL-10, secretion of IgA2 by CD40-activated naive B cells could be detected only in response to D-Lc and was further enhanced by TGF-β. Collectively, these results suggest that in addition to activating T cells in the extrafollicular areas of secondary lymphoid organs, human D-Lc also directly modulate T cell–dependent B cell growth and differentiation, by inducing the IgA isotype switch.


Sign in / Sign up

Export Citation Format

Share Document