scholarly journals Research on the Fatigue Properties of High Strength Concrete after Exposure to High Temperature under Low Cyclic Compressive Loading

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Linhao Wang ◽  
Haijing Gao ◽  
Haibiao Gao ◽  
Zhili Luo

By using an electrohydraulic servo fatigue testing machine, fatigue tests were performed on C60 high strength concrete (HSC) under low cyclic compressive loading after undergoing normal temperature, 200°C, 400°C, 600°C, and 800°C. Failure patterns of high strength concrete under low cyclic compressive loading were observed. The influence of the high temperature process on the static elastic modulus of high strength concrete was analyzed. By studying the development law of fatigue strain, regression equations of fatigue strain after different high temperatures were established. Furthermore, the fatigue deformation modulus ratio was defined as the damage variable and the relationship models between the high temperature process and the fatigue damage were established. It provides the experimental foundation for fatigue damage analysis of high strength concrete in objective working conditions, which includes repeated loading and different high temperature processes.

2018 ◽  
Vol 22 (3) ◽  
pp. 779-791
Author(s):  
Dongfu Zhao ◽  
Penghe Jia ◽  
Pingying Hou ◽  
Huixuan Liu ◽  
Rundong Zhao ◽  
...  

The uniaxial compressive cycling tests of high-strength concrete after high temperature under different stress were carried out using the electrohydraulic servo-controlled fatigue testing system. The investigation focused on low-cycle fatigue to figure out the relationship between microstructural development and number of cycles. The variation in microstructure during uniaxial compressive fatigue process was systematically analyzed and compared using ultrasonic, micro-hardness test, mercury intrusion porosimetry, and scanning electron microscopy. It is found that at the same life ratio, the cumulative fatigue damage caused by the lower stress is greater than that caused by the higher stress, and the four kinds of test methods used to measure the microstructure are consistent, interrelated, and confirmed with each other well. Through the nonlinear regression analysis of fatigue residual strain and microstructural parameters, the relationship models between them were established. Furthermore, the fatigue damage models based on microstructural parameters were established. On this basis, both the dynamic evolution process and damage mechanism of microstructure during uniaxial compressive fatigue were further revealed.


2014 ◽  
Vol 1014 ◽  
pp. 49-52
Author(s):  
Xiao Ping Su

With the wide application of high strength concrete in the building construction,the risk making concrete subject to high temperatures during a fire is increasing. Comparison tests on the mechanical properties of high strength concrete (HSC) and normal strength concrete (NSC) after the action of high temperature were made in this article, which were compared from the following aspects: the peak stress, the peak strain, elasticity modulus, and stress-strain curve after high temperature. Results show that the laws of the mechanical properties of HSC and NSC changing with the temperature are the same. With the increase of heating temperature, the peak stress and elasticity modulus decreases, while the peak strain grows rapidly. HSC shows greater brittleness and worse fire-resistant performance than NSC, and destroys suddenly. The research and evaluation on the fire-resistant performance of HSC should be strengthened during the structural design and construction on the HSC buildings.


2014 ◽  
Vol 26 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Yong-Hak Kang ◽  
Choong-Hyun Kang ◽  
Hyun-Guk Choi ◽  
Hyun-Jun Shin ◽  
Wha-Jung Kim

2019 ◽  
Vol 218 ◽  
pp. 448-456 ◽  
Author(s):  
Gyeongcheol Choe ◽  
Gyuyong Kim ◽  
Hongseop Kim ◽  
Euichul Hwang ◽  
Sangkyu Lee ◽  
...  

2014 ◽  
Vol 629-630 ◽  
pp. 259-264
Author(s):  
Gai Fei Peng ◽  
Xiao Li Wang ◽  
Lin Wang

An experimental investigation was conducted to study residual mechanical properties of Ultra-High-Strength concrete with different dosages of glassified micro-bubble after exposure to high temperature. After exposure to different target temperatures (room temperature, 200 °C, 400 °C, 600 °C,800 °C), residual mechanical properties (residual compressive strength, residual tensile splitting strength, residual fracture energy) of Ultra-High-Strength concrete under different conditions including 1 water-binder ratios (0.18), 3 different contents of glassified micro-bubble (0%, 40%, 60%) were all investigated. The effect of different dosage of glassified micro-bubble was studied on residual mechanical properties of Ultra-High-Strength concrete after exposure to high temperature. The results indicate that the variations of different kinds of Ultra-High-Strength concrete with different dosage of glassified micro-bubble are basically the same. With the increase of temperature, the residual mechanical properties increase at first, then decrease. The residual mechanical properties decrease after exposure to high temperature of 800 °C.


Sign in / Sign up

Export Citation Format

Share Document