scholarly journals A Nonlinear Strength Criterion for Frozen Sulfate Saline Silty Clay with Different Salt Contents

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhu Zhao ◽  
Yuanming Lai ◽  
Jing Zhang ◽  
Chong Wang

It has been proven that the mechanical properties of frozen saline soils are different from frozen soils and unfrozen saline soils. In this paper, in order to study the effects of the salt contents on the strength characteristics of frozen soils, a series of conventional triaxial compression tests are carried out for frozen saline silty clay with Na2SO4 contents 0.0, 0.5, 1.5, and 2.5% under confining pressures from 0 MPa to 18 MPa at −6°C, respectively. The experimental results show that the strength of frozen saline silty clay presents obvious nonlinearity, the strength of frozen saline silty clay increases with increasing confining pressures at first, but with a further increase in confining pressures, the strength decreases because of pressure melting and crushing phenomena under high confining pressures, and salt contents have an important influence on strength of frozen saline silty clay. A strength criterion is proposed on the basis of the experimental results. The strength criterion could well reflect the nonlinear strength characteristic of frozen saline silty clay and the influence of salt contents on frozen saline silty clay.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Tuo Wang ◽  
Zhanguo Ma ◽  
Peng Gong ◽  
Ning Li ◽  
Shixing Cheng

In underground mining and roadway support engineering of coal mine, the coal and rock layers bear loads together; therefore, the deformation and mechanical characteristics of the coal-rock combined bodies are not the same as those of the pure coal or rock bodies. In this paper, conventional triaxial compression tests of coal-rock combined bodies with different height ratios were conducted. And the stress and deformation characteristics of coal-rock combined body were studied and the experimental results were analyzed with different strength criteria. The results show that the peak stress, elastic modulus, and strength reduction coefficient of coal-rock combined body are negatively correlated with the ratio of coal to coal-rock combination height and positively correlated with the confining pressure; the coal-rock combination shows obvious ductility under 10 MPa confining pressure. Under the conventional triaxial condition, the shear failure was the main cause of the lateral deformation of the coal body in the coal-rock combination, which was much larger than that of the rock body. The circle deformation value, volume strain value, and the deformation rate in the postpeak stage of coal-rock combination are much higher than those in the prepeak stage. Mohr–Coulomb and general Hoek–Brown strength criterion fit the experimental results well.


1975 ◽  
Vol 97 (2) ◽  
pp. 479-484 ◽  
Author(s):  
Leonard L. Smith ◽  
J. B. Cheatham

The experimental deformation of ice and sand-ice systems is compared with predictions based upon plasticity theory. Properties of the materials were determined under various temperatures, confining pressures, and loading rates using conventional triaxial compression tests. Samples were indented at atmospheric pressure using flat punches and sharp wedges at two loading rates and calculated force-displacement relationships were determined for the von Mises, coulomb, and parabolic yield conditions. Comparison of the results of the experiments with the computations indicates that the force-displacement relationships for ice and sand-ice samples can be approximated using plasticity theory.


2015 ◽  
Vol 60 (2) ◽  
pp. 517-534 ◽  
Author(s):  
Mirosława Bukowska

AbstractIn this paper, we present the results of a study of the Upper Carboniferous sedimentary rocks of the Upper Silesian Coal Basin (USCB) in Poland. We examined the hard coals, which belong to various stratigraphic units of Upper Carboniferous coal-bearing strata, and waste rocks, i.e., sandstones, mudstones, claystones. We present the results of tests of their post-critical mechanical properties. These results are from tests of the post-critical modulus, residual stress and residual deformation from experiments using a servo-controlled testing machine (MTS) with uniaxial compression and conventional triaxial compression. We applied confining pressures of up to 50 MPa at a strain rate of 10−5− 10−1s−1(0.003-6.0 mm/sec). The confining pressure applied in the triaxial compression tests reflected the conditions of current and future mining activities in the USCB at depths exceeding 1.300 metres. The strain rate applied in the tests reflected the values observed in the rockmass surrounding the mine workings and the rate of certain geodynamic phenomena occurring in the Carboniferous rockmass in the USCB, e.g., rock bursts. We present the values of the sub-critical modulus of coals and waste rocks, the functional relationships between the post-critical modulus and uniaxial compression strength, which are described using an exponential function of high correlation coefficients of the given rocks, and an exponential relationship between the post-critical modulus and the longitudinal elasticity modulus (Young’s modulus). Based on the results of tests of the post-critical properties of the Carboniferous rocks under triaxial compression and at various strain rates, we devised the functional relationships between the properties of the rocks and the confining pressure. The dependence of the post-critical modulus of the sandstones and claystones on the confining pressure is described using a polynomial function of degree 2, and that of the coals is described using an exponential function. The relationship between the residual stress and residual deformation in the rocks and the confining pressure was described using a linear function. The obtained results of tests have a practical application in forecasting behaviour of rocks located deep, and designing safe exploitation of mineral deposits. Confining pressures of up to 50 MPa used in the conventional triaxial compression tests allowed us to predict the behaviour of the rock mass at large depths. These data provide general knowledge of the tendencies in behaviour of rocks at substantial depths and the ability to design safe methods of mining deposits of various raw materials, including energy sources. These deposits are mined from increasingly great depths as the reserves are gradually exhausted and collieries of the largest European coal basins are continuously reconfigured.


2011 ◽  
Vol 90-93 ◽  
pp. 28-32
Author(s):  
Mohamed A. Shahin ◽  
Alice Cargeeg

The procedure for conventional triaxial compression (CTC) test requires three separate soil specimens to be examined to failure under different confining pressures so that Mohr-Coulomb (or stress path) failure envelope can be determined and soil shear strength parameters can be obtained. An alternative procedure is the multi-stage triaxial (MST) compression test, which requires only one soil specimen to be tested at three stages of shearing with different confining pressures. There are several advantages for using MST over CTC, which apart from fewer soil specimens, include less laboratory time consumption and reduced effects of heterogeneity among the specimens tested. However, it has been argued in the literature that the advantages of using MST may be compromised by its inability to obtain reliable soil behavior or accurate shear strength parameters. In this paper, the accuracy of MST compared to CTC is investigated for a c-phi soil, and a simple procedure that can be adopted to rectify the MST results is proposed.


2017 ◽  
Vol 27 (8) ◽  
pp. 1131-1155 ◽  
Author(s):  
Zhiwei Zhou ◽  
Wei Ma ◽  
Shujuan Zhang ◽  
Cong Cai ◽  
Yanhu Mu ◽  
...  

A series of multistage triaxial compression, creep, and stress relaxation tests were conducted on frozen loess at the temperature of −6℃ in order to study the damage evolution and recrystallization enhancement of mechanical properties during deformation process. The effect of strain rate, confining pressure, and hydrostatic stress history in the degradation laws of mechanical properties is investigated further. The strain rate has a significant influence on the stress–strain curve which dominates the evolution trend of mechanical properties. The mechanical behaviors (strength, stiffness, and viscosity) of frozen loess all exhibit evident response for the consolidation and pressure melting phenomenon caused by the confining pressure. The multistage loading tests under different hydrostatic stresses are capable of differentiating the development characteristics of mechanical properties during axial loading and hydrostatic compression process, respectively. The testing results indicated that the recrystallization of the ice particle in the frozen soils is an important microscopic factor for enhancement behaviors of mechanical parameters during the deformation process. This strengthening degree of mechanical properties is determined by temperature, duration time, deformation degree, and stress state during the recrystallization process. The phase transformation led by pressure melting and ice recrystallization is a nonnegligible changing pattern of frozen soils microstructure, which has apparent role in the damage evolution of mechanical properties.


2013 ◽  
Vol 50 (11) ◽  
pp. 1159-1178 ◽  
Author(s):  
Hamid Karimpour ◽  
Poul V. Lade

Triaxial compression tests were performed on dense specimens of Virginia Beach sand at low and high confining pressures to study time effects that relate to grain crushing due to static fatigue or delayed fracture. Experiments to study effects of loading strain rate on subsequent creep showed negligible time effects and no grain crushing at low confining pressures, while tests at high confining pressures indicated increasing amounts of creep with increasing initial loading strain rates and with increasing deviator stress at creep. Investigation of effects of grain-size distribution indicated stiffer initial response and smaller amounts of creep for more uniformly graded soils at high confining pressures. The experimental results showed that structuration effects were not present in the dense Virginia Beach sand. A long-term creep test at high confining pressure indicated continuous creep with no indication of its termination. Sieve analyses following each triaxial test showed that grain crushing, as quantified by Hardin’s relative breakage factor, was proportional to energy input and amount of creep observed for each soil specimen. The creep is due to the time-dependent static fatigue by which the grains crush and cause rearrangement of the grain structure, and this is the reason behind the time effects in granular materials.


2016 ◽  
Vol 858 ◽  
pp. 219-224 ◽  
Author(s):  
Eduardo Eiler Batista de Araújo ◽  
Dragana Simon ◽  
Fagner Alexandre Nunes de França ◽  
Osvaldo de Freitas Neto ◽  
Olavo Francisco dos Santos Jr.

Deep mining operations require special measures in order to keep safe and economic aspects. After mine ore is extracted, voids are created and need to be filled with high-strength, low-cost materials. Cemented Paste Backfill (CPB) has recently become one of the main alternatives in filling stopes. Although numerous papers have mentioned the magnitudes of the strength of this material, its behavior under high confining pressures is still not well understood. Therefore, the purpose of this study is to increase the knowledge regarding the CPB behavior. Triaxial compression tests were performed using a Hoek Cell and Load Frame System under high confining pressures. Samples with two different binder contents were used in order to obtain the CPB strength improvement. Besides the self-weight consolidation curing method, samples were subjected to a different curing method that simulated a zero gravity condition (rotating wheel) in the first curing day to compare their mixture properties. The results suggested that both curing method and binder content have influenced the geomechanical properties of Cemented Paste Backfill. By increasing the curing time, the CPB shear strength has increased slightly, whereas specimens with higher binder content presented a significant increase in shear strength values.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jun-Ling Qin ◽  
Wei-Guo Qiao ◽  
Deng-Ge Lin ◽  
Shuai Zhang ◽  
Ji-Yao Wang

The strength of crumb rubber mortars can be improved by the addition of basalt fibers. However, limited studies have been conducted on basalt fiber crumb rubber mortars (BF-CRM), and the constitutive model is still very immature. In this paper, uniaxial compressive stress-strain curves are obtained for several groups of BF-CRM specimens with different contents. By comparison with the GZH model, modified GZH parameters that can be used in a BF-CRM constitutive model are obtained. Then, taking the support scheme of the main substation of a mine as the background, FLAC3D is used to simulate the roadway support, BF-CRM replaces the ordinary mortars in the original support, and triaxial compression tests are performed at different confining pressures. In this way, the application of BF-CRM in roadway support is studied and analyzed.


2021 ◽  
Vol 60 (1) ◽  
pp. 846-852
Author(s):  
Yang Yan-Shuang ◽  
Li Kai-Yue ◽  
Zhou Hui ◽  
Tian Hao-Yuan ◽  
Cheng Wei ◽  
...  

Abstract Computed tomography (CT) scanning technology is helpful in investigating rock materials as it can demonstrate the micro structure of rock clearly. Conventional triaxial compression tests and the corresponding graded triaxial loading tests were carried out to investigate the complex failure mechanism of the marble at the Jinping Hydropower Station. After that CT-scanning tests were done on the loaded marble specimens. The test results show that (1) the CT numbers of the specimens have a certain statistical regularity, that is, the CT numbers of the specimens under different confining pressures satisfy the Weibull distribution, as the confining pressure increases, the mean values rise while variances decrease; (2) in the two groups of tests, the average CT numbers corresponding to the conventional triaxial tests are higher than those corresponding to the graded loading tests, but the CT number variances are lower than those of the graded loading tests; and (3) according to meso-damage mechanics, the damage variables of the rock specimens were established based on the definition of CT numbers. The calculation results show that the damage variables decrease with the increase in confining pressure, the damage variables of the rock specimens in the graded loading tests are higher than those in the conventional triaxial test, and the differences between the two loading tests have grown with the increase in confining pressure.


Sign in / Sign up

Export Citation Format

Share Document