Damage evolution and recrystallization enhancement of frozen loess

2017 ◽  
Vol 27 (8) ◽  
pp. 1131-1155 ◽  
Author(s):  
Zhiwei Zhou ◽  
Wei Ma ◽  
Shujuan Zhang ◽  
Cong Cai ◽  
Yanhu Mu ◽  
...  

A series of multistage triaxial compression, creep, and stress relaxation tests were conducted on frozen loess at the temperature of −6℃ in order to study the damage evolution and recrystallization enhancement of mechanical properties during deformation process. The effect of strain rate, confining pressure, and hydrostatic stress history in the degradation laws of mechanical properties is investigated further. The strain rate has a significant influence on the stress–strain curve which dominates the evolution trend of mechanical properties. The mechanical behaviors (strength, stiffness, and viscosity) of frozen loess all exhibit evident response for the consolidation and pressure melting phenomenon caused by the confining pressure. The multistage loading tests under different hydrostatic stresses are capable of differentiating the development characteristics of mechanical properties during axial loading and hydrostatic compression process, respectively. The testing results indicated that the recrystallization of the ice particle in the frozen soils is an important microscopic factor for enhancement behaviors of mechanical parameters during the deformation process. This strengthening degree of mechanical properties is determined by temperature, duration time, deformation degree, and stress state during the recrystallization process. The phase transformation led by pressure melting and ice recrystallization is a nonnegligible changing pattern of frozen soils microstructure, which has apparent role in the damage evolution of mechanical properties.

2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Chenghua Xu ◽  
Liuyang Li ◽  
Yong Liu

Flaws existing in rock masses are generally unparallel and under three-dimensional stress; however, the mechanical and cracking behaviors of the specimens with two unparallel flaws under triaxial compression have been rarely studied. Therefore, this study conducted comprehensive research on the cracking and coalescence behavior and mechanical properties of specimens with two unparallel flaws under triaxial compression. Triaxial compressive tests were conducted under different confining pressures on rock-like specimens with two preexisting flaws but varying flaw geometries (with respect to the inclination angle of the two unparallel flaws, rock bridge length, and rock bridge inclination angle). Six crack types and eleven coalescence types in the bridge region were observed, and three types of failure modes (tensile failure, shear failure, and tensile-shear failure) were observed in experiments. Test results show that bridge length and bridge inclination angle have an effect on the coalescence pattern, but the influence of bridge inclination angle is larger than that of the bridge length. When the confining pressure is low, coalescence patterns and failure modes of the specimens are greatly affected by flaw geometry, but when confining pressure rose to a certain level, the influence of confining pressure is larger than the effect of flaw geometry. The peak strength of the specimens is affected by flaw geometry and confining pressure. There is a critical value for the bridge length. If the bridge length is larger than the critical value, peak strengths of the samples almost keep constant as the bridge length increases. In addition, as the bridge inclination angle increases, there is an increase in the probability of tensile cracks occurring, and with an increase in the confining pressure, the probability of the occurrence of shear cracks increases.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3414
Author(s):  
Chaojun Jia ◽  
Qiang Zhang ◽  
Susheng Wang

The mechanical behavior of the sandstone at the dam site is important to the stability of the hydropower station to be built in Southwest China. A series of triaxial compression tests under different confining pressures were conducted in the laboratory. The critical stresses were determined and the relationship between the critical stress and confining pressure were analyzed. The Young’s modulus increases non-linearly with the confining pressure while the plastic strain increment Nϕ and the dilation angle ϕ showed a negative response. Scanning electron microscope (SEM) tests showed that the failure of the sandstone under compression is a coupled process of crack growth and frictional sliding. Based on the experimental results, a coupled elastoplastic damage model was proposed within the irreversible thermodynamic framework. The plastic deformation and damage evolution were described by using the micromechanical homogenization method. The plastic flow is inherently driven by the damage evolution. Furthermore, a numerical integration algorithm was developed to simulate the coupled elastoplastic damage behavior of sandstone. The main inelastic properties of the sandstone were well captured. The model will be implemented into the finite element method (FEM) to estimate the excavation damaged zones (EDZs) which can provide a reference for the design and construction of such a huge hydropower project.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jifeng Hou ◽  
Zhongping Guo ◽  
Weizhen Liu ◽  
Hengze Yang ◽  
WenWu Xie

Aiming at the backfill with prefabricated fracture under seepage-stress coupling, the concepts of fracture macrodamage, loaded mesodamage, seepage mesodamage, and total damage of backfill were proposed. Based on the macroscopic statistical damage model, the coupling effect of seepage, stress, and initial fracture was considered comprehensively and the damage model of backfill with prefabricated fracture under seepage-stress coupling was established. The mechanical properties of backfill with prefabricated fracture under different seepage water pressures and confining pressures were tested and the rationality of the model was verified. The research shows that the mechanical properties of backfill with prefabricated fracture under the seepage-stress coupling are determined by the seepage water pressure, the load, the initial fracture, and the coupling effect. Fracture and seepage have significant effects on the damage of the backfill. When the seepage water pressure is low, the fracture damage dominates; however, when the seepage water pressure is high, the seepage damage dominates; the total damage under the coupling action is more serious than the single factor. The development laws of the total damage evolution curves under different seepage water pressures and confining pressures are basically the same, and they show the S-shaped distribution law with the increase of the axial strain. With the increase of confining pressure, the damage effect of fracture and seepage on the backfill is weakened, indicating that the confining pressure has a certain inhibitory effect on the damage evolution of the backfill. The research results can provide a theoretical basis for the study of the stability of backfill with geological defects such as joints and fractures in deep high-stress and high-seepage water pressure coal mines.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ruijun Wang ◽  
Yan Li ◽  
Yang Li ◽  
Fan Xu ◽  
Xiaotong Li ◽  
...  

This study aims at determining the effect of water pressure on the mechanical properties of concrete subjected to freeze-thaw (F-T) attack under the dynamic triaxial compression state. Two specimens were used: (1) a 100 mm × 100 mm × 400 mm prism for testing the loss of mass and relative dynamic modulus of elasticity (RDME) after F-T cycles and (2) cylinders with a diameter of 100 mm and a height of 200 mm for testing the dynamic mechanical properties of concrete. Strain rates ranged from 10−5·s−1 to 10−3·s−1, and F-T cycles ranged from 0 to 100. Three levels of water pressure (0, 5, and 10 MPa) were applied to concrete. Results showed that as the number of F-T cycles increased, the mass loss rate of the concrete specimen initially decreased and then increased, but the RDME decreased. Under 5 MPa of water pressure and at the same strain rate, the ultimate compressive strength decreased, whereas the peak strain increased with the increase in the number of F-T cycles. This result is contrary to the variation law of ultimate compressive strength and peak strain with the increase in strain rate under the same number of F-T times. With the increase in F-T cycles or water pressure, the strain sensitivity of the dynamic increase factor of ultimate compressive strength and peak strain decreased, respectively. After 100 F-T cycles, the dynamic compressive strength under all water pressure levels tended to increase as the strain rate increased, whereas the peak strain decreased gradually.


Author(s):  
Feng Yu ◽  
Yongchen Song ◽  
Weiguo Liu ◽  
Yanghui Li ◽  
Jiafei Zhao

The production of methane from hydrate reservoir may induce deformation of the hydrate-bearing strata. The research on mechanical properties of methane hydrate and establishing an efficient methane exploitation technology appear very important. In this paper, a low-temperature high-pressure triaxial test system including pressure crystal device (sample preparation system) was developed. A series of triaxial shear tests were carried out on artificial methane hydrate samples. The mechanical behavior was analyzed. The preliminary results show that the shear strength of methane hydrate increases with the increase of confining pressure and strain rate. While it increases with the decrease of temperature. Moreover, the secant modulus increases with the enhancement of strain rate and the decrease of confining pressure.


1994 ◽  
Vol 353 ◽  
Author(s):  
M. Umedera ◽  
A. Fujiwara ◽  
N. Yasufuku ◽  
M. Hyodo ◽  
H. Murata

AbstractA series of triaxial compression tests is being conducted under the drained condition on bentonite and sand mixtures, known as buffer, in saturated and optimum water content states to clarify the mechanical properties of the buffer.It was found that the mechanical properties of bentonite and sand mixtures are strongly influenced by water and bentonite contents: shear strength in a saturated state is less than that in an optimum water content state; shear strength decreases rapidly with increasing bentonite content. Strength properties are much dependent on confining pressure.


1995 ◽  
Vol 32 (3) ◽  
pp. 428-451 ◽  
Author(s):  
Glen R. Andersen ◽  
Christopher W. Swan ◽  
Charles C. Ladd ◽  
John T. Germaine

The stress–strain behavior of frozen Manchester fine sand has been measured in a high-pressure low-temperature triaxial compression testing system developed for this purpose. This system incorporates DC servomotor technology, lubricated end platens, and on-specimen axial strain devices. A parametric study has investigated the effects of changes in strain rate, confining pressure, sand density, and temperature on behavior for very small strains (0.001%) to very large (> 20%) axial strains. This paper presents constitutive behavior for strain levels up to 1%. On-specimen axial strain measurements enabled the identification of a distinct upper yield stress (knee on the stress–strain curve) and a study of the behavior in this region with a degree of precision not previously reported in the literature. The Young's modulus is independent of strain rate and temperature, increases slightly with sand density in a manner consistent with Counto's model for composite materials, and decreases slightly with confining pressure. In contrast, the upper yield stress is independent of sand density, slightly dependent on confining pressure (considered a second order effect), but is strongly dependent on strain rate and temperature in a fashion similar to that for polycrystalline ice. Key words : frozen sand, high-pressure triaxial compression, strain rate, temperature, modulus, yield stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhu Zhao ◽  
Yuanming Lai ◽  
Jing Zhang ◽  
Chong Wang

It has been proven that the mechanical properties of frozen saline soils are different from frozen soils and unfrozen saline soils. In this paper, in order to study the effects of the salt contents on the strength characteristics of frozen soils, a series of conventional triaxial compression tests are carried out for frozen saline silty clay with Na2SO4 contents 0.0, 0.5, 1.5, and 2.5% under confining pressures from 0 MPa to 18 MPa at −6°C, respectively. The experimental results show that the strength of frozen saline silty clay presents obvious nonlinearity, the strength of frozen saline silty clay increases with increasing confining pressures at first, but with a further increase in confining pressures, the strength decreases because of pressure melting and crushing phenomena under high confining pressures, and salt contents have an important influence on strength of frozen saline silty clay. A strength criterion is proposed on the basis of the experimental results. The strength criterion could well reflect the nonlinear strength characteristic of frozen saline silty clay and the influence of salt contents on frozen saline silty clay.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Cong Cai ◽  
Wei Ma ◽  
Shuping Zhao ◽  
Yanhu Mu

The damage variable is very important to study damage evolution of material. Taking frozen loess as an example, a series of triaxial compression and triaxial loading-unloading tests are performed under five strain rates of 5.0 × 10−6–1.3 × 10−2/s at a temperature of −6°C. A damage criterion of frozen loess is defined and a damage factorDcis introduced to satisfy the requirements of the engineering application. The damage variable of frozen loess is investigated using the following four methods: the stiffness degradation method, the deformation increase method, the dissipated energy increase method, and the constitutive model deducing method during deformation process. In addition, the advantages and disadvantages of the four methods are discussed when they are used for frozen loess material. According to the discussion, the plastic strain may be the most appropriate variable to characterize the damage evolution of frozen loess during the deformation process based on the material properties and the nature of the material service.


Sign in / Sign up

Export Citation Format

Share Document