scholarly journals Simulation of Turbulent Wake at Mixing of Two Confined Horizontal Flows

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Rok Krpan ◽  
Boštjan Končar

The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such flows can be modelled as the flow of two components, where the concentration of one component in the mixing region is described as a passive scalar. The velocity field remains common over the entire computational domain, where the density and viscosity difference due to the concentration mainly affects the turbulent fluctuations in the mixing region. The numerical simulations are performed with the open source code OpenFOAM using two different approaches for turbulence modelling, Reynolds Averaged Navier Stokes equations (RANS) and Large Eddy Simulation (LES). The simulation results are discussed and compared with the benchmark experiment obtained within the frame of OECD/NEA benchmark test. A good agreement with experimental results is obtained in the case of the single liquid experiment. A high discrepancy between the simulated and the experimental velocity fluctuations in the case of mixing of the flows with the slightly different densities and viscosities triggered a systematic investigation of the modelling approaches that helped us to find out and interpret the main reasons for the disagreement.

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2002 ◽  
Vol 124 (2) ◽  
pp. 413-423 ◽  
Author(s):  
L. S. Hedges ◽  
A. K. Travin ◽  
P. R. Spalart

The flow around a generic airliner landing-gear truck is calculated using the methods of Detached-Eddy Simulation, and of Unsteady Reynolds-Averaged Navier-Stokes Equations, with the Spalart-Allmaras one-equation model. The two simulations have identical numerics, using a multi-block structured grid with about 2.5 million points. The Reynolds number is 6×105. Comparison to the experiment of Lazos shows that the simulations predict the pressure on the wheels accurately for such a massively separated flow with strong interference. DES performs somewhat better than URANS. Drag and lift are not predicted as well. The time-averaged and instantaneous flow fields are studied, particularly to determine their suitability for the physics-based prediction of noise. The two time-averaged flow fields are similar, though the DES shows more turbulence intensity overall. The instantaneous flow fields are very dissimilar. DES develops a much wider range of unsteady scales of motion and appears promising for noise prediction, up to some frequency limit.


Author(s):  
Jens A. Melheim ◽  
Stefan Horender ◽  
Martin Sommerfeld

Numerical calculations of a particle-laden turbulent horizontal mixing-layer based on the Eulerian-Lagrangian approach are presented. Emphasis is given to the determination of the stochastic fluctuating fluid velocity seen by the particles in anisotropic turbulence. The stochastic process for the fluctuating velocity is a “Particle Langevin equation Model”, based on the Simplified Langevin Model. The Reynolds averaged Navier-Stokes equations are closed by the standard k-epsilon turbulence model. The calculated concentration profile and the mean, the root-mean-square (rms) and the cross-correlation terms of the particle velocities are compared with particle image velocimetry (PIV) measurements. The numerical results agree reasonably well with the PIV data for all of the mentioned quantities. The importance of the modeled vortex structure “seen” by the particles is discussed.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


2014 ◽  
Author(s):  
P. Bigay ◽  
A. Bardin ◽  
G. Oger ◽  
D. Le Touzé

In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.


Author(s):  
Dimitiros I. Papadimitriou ◽  
Kyriakos C. Giannakoglou

In this paper, a constrained optimization algorithm is formulated and utilized to improve the aerodynamic performance of a 3D peripheral compressor blade cascade. The cascade efficiency is measured in terms of entropy generation along the developed flowfield, which defines the field objective functional to be minimized. Its gradient with respect to the design variables, which are the coordinates of the Non-Uniform Rational B-Spline (NURBS) control points defining the blade, is computed through a continuous adjoint formulation of the Navier-Stokes equations based on the aforementioned functional. The steepest descent algorithm is used to locate the optimal set of design variables, i.e. the optimal blade shape. In addition to the well-known advantages of the adjoint method, the current formulation has even less CPU cost for the gradient computation as it leads to gradient expression which is free of field variations in geometrical quantities (such as derivatives of interior grid node coordinates with respect to the design variables); the computation of the latter would be costly since it requires remeshing anew the computational domain for each bifurcated design variable. The geometrical constraints, which depend solely on the blade parameterization, are handled by a quadratic penalty method by introducing additional Lagrange multipliers.


Author(s):  
Manasa Ranjan Behera ◽  
K. Murali

Multiphase flows simulations using a robust interface-tracking method, are presented. The method is based on writing one set of governing equations for the whole computational domain and treating the different phases as single fluid domain with variable material properties. Interfacial terms are accounted for by adding the appropriate sources as δ functions at the boundary separating the phases. The unsteady Navier-Stokes equations are solved by finite volume method on a fixed, structured grid and the interface, or front, is tracked explicitly by a lower dimensional grid. Interfacial source terms are computed on the front and transferred to the fixed grid. Advection of fluid properties such as density and viscosity is done by following the motion of the front. The method has been implemented for interfacial flow problems, depicting the interface and topology change capturing capability. The representation of the moving interface and its dynamic restructuring, as well as the transfer of information between the moving front and the fixed grid, is discussed. Extensions of the method to density stratified flows, and interfacial movements are then presented.


Author(s):  
Jaromi´r Hora´cˇek ◽  
Miloslav Feistauer ◽  
Petr Sva´cˇek

The contribution deals with the numerical simulation of the flutter of an airfoil with three degrees of freedom (3-DOF) for rotation around an elastic axis, oscillation in the vertical direction and rotation of a flap. The finite element (FE) solution of two-dimensional (2-D) incompressible Navier-Stokes equations is coupled with a system of nonlinear ordinary differential equations describing the airfoil vibrations with large amplitudes taking into account the nonlinear mass matrix. The time-dependent computational domain and a moving grid are treated by the Arbitrary Lagrangian-Eulerian (ALE) method and a suitable stabilization of the FE discretization is applied. The developed method was successfully tested by the classical flutter computation of the critical flutter velocity using NASTRAN program considering the linear model of vibrations and the double-lattice aerodynamic theory. The method was applied to the numerical simulations of the post flutter regime in time domain showing Limit Cycle Oscillations (LCO) due to nonlinearities of the flow model and vibrations with large amplitudes. Numerical experiments were performed for the airfoil NACA 0012 respecting the effect of the air space between the flap and the main airfoil.


Sign in / Sign up

Export Citation Format

Share Document