Modeling of the Vortex-Structure in a Particle-Laden Mixing-Layer

Author(s):  
Jens A. Melheim ◽  
Stefan Horender ◽  
Martin Sommerfeld

Numerical calculations of a particle-laden turbulent horizontal mixing-layer based on the Eulerian-Lagrangian approach are presented. Emphasis is given to the determination of the stochastic fluctuating fluid velocity seen by the particles in anisotropic turbulence. The stochastic process for the fluctuating velocity is a “Particle Langevin equation Model”, based on the Simplified Langevin Model. The Reynolds averaged Navier-Stokes equations are closed by the standard k-epsilon turbulence model. The calculated concentration profile and the mean, the root-mean-square (rms) and the cross-correlation terms of the particle velocities are compared with particle image velocimetry (PIV) measurements. The numerical results agree reasonably well with the PIV data for all of the mentioned quantities. The importance of the modeled vortex structure “seen” by the particles is discussed.

2002 ◽  
Vol 124 (2) ◽  
pp. 413-423 ◽  
Author(s):  
L. S. Hedges ◽  
A. K. Travin ◽  
P. R. Spalart

The flow around a generic airliner landing-gear truck is calculated using the methods of Detached-Eddy Simulation, and of Unsteady Reynolds-Averaged Navier-Stokes Equations, with the Spalart-Allmaras one-equation model. The two simulations have identical numerics, using a multi-block structured grid with about 2.5 million points. The Reynolds number is 6×105. Comparison to the experiment of Lazos shows that the simulations predict the pressure on the wheels accurately for such a massively separated flow with strong interference. DES performs somewhat better than URANS. Drag and lift are not predicted as well. The time-averaged and instantaneous flow fields are studied, particularly to determine their suitability for the physics-based prediction of noise. The two time-averaged flow fields are similar, though the DES shows more turbulence intensity overall. The instantaneous flow fields are very dissimilar. DES develops a much wider range of unsteady scales of motion and appears promising for noise prediction, up to some frequency limit.


2019 ◽  
Vol 224 ◽  
pp. 02003
Author(s):  
Andrey Shobukhov

We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of the linear electric potential variation for the uniform ion distribution and compare analytical results with numerical solutions. The developed model successfully describes the stability loss of the steady state solution and demonstrates the emerging of spatially non-uniform distribution of the electric potential. However, this model should be generalized by accounting for the convective movement via the addition of the Navier-Stokes equations in order to substantially extend its application field.


1997 ◽  
Vol 330 ◽  
pp. 375-409 ◽  
Author(s):  
TIM COLONIUS ◽  
SANJIVA K. LELE ◽  
PARVIZ MOIN

The sound generated by vortex pairing in a two-dimensional compressible mixing layer is investigated. Direct numerical simulations (DNS) of the Navier–Stokes equations are used to compute both the near-field region and a portion of the acoustic field. The acoustic analogy due to Lilley (1974) is also solved with acoustic sources determined from the near-field data of the DNS. It is shown that several commonly made simplifications to the acoustic sources can lead to erroneous predictions for the acoustic field. Predictions based on the quadrupole form of the source terms derived by Goldstein (1976a, 1984) are in excellent agreement with the acoustic field from the DNS. However, despite the low Mach number of the flow, the acoustic far field generated by the vortex pairings cannot be described by considering compact quadrupole sources. The acoustic sources have the form of modulated wave packets and the acoustic far field is described by a superdirective model (Crighton & Huerre 1990). The presence of flow–acoustic interactions in the computed source terms causes the acoustic field predicted by the acoustic analogy to be very sensitive to small changes in the description of the source.


Author(s):  
Arezou Jafari ◽  
S. Mohammad Mousavi

Numerical study of flow through random packing of non-overlapping spheres in a cylindrical geometry is investigated. Dimensionless pressure drop has been studied for a fluid through the porous media at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), and numerical solution of Navier-Stokes equations in three dimensional porous packed bed illustrated in excellent agreement with those reported by Macdonald [1979] in the range of Reynolds number studied. The results compare to the previous work (Soleymani et al., 2002) show more accurate conclusion because the problem of channeling in a duct geometry. By injection of solute into the system, the dispersivity over a wide range of flow rate has been investigated. It is shown that the lateral fluid dispersion coefficients can be calculated by comparing the concentration profiles of solute obtained by numerical simulations and those derived analytically by solving the macroscopic dispersion equation for the present geometry.


1980 ◽  
Vol 102 (1) ◽  
pp. 47-53 ◽  
Author(s):  
M. A. Habib ◽  
J. H. Whitelaw

Measured values of the velocity characteristics of turbulent, confined, coaxial-jet flows have been obtained, without swirl, for ratios of maximum annulus to pipe velocities of 1.0 and 3.0 and with a swirl number of 0.23 for a velocity ratio of 3.0. They were obtained by a combination of pressure probes, hot-wire and laser-Doppler anemometry. The results are compared with calculations, based on the solution of finite-difference forms of the steady, Navier-Stokes equations, and an effective-viscosity hypothesis. The measurements allow the influence of confinement and swirl to be quantified and show, for example, the increased tendency towards centerline recirculation which results from both. The results with the three types of instrumentation allow a comparison within the corner recirculation region which reveals that serious errors of interpretation of mean-velocity measurements need not arise. The two-equation model, although able to represent the non-swirling flow is less appropriate to the swirling flow and the reasons are indicated.


1958 ◽  
Vol 25 (4) ◽  
pp. 613-617
Author(s):  
F. M. White ◽  
B. F. Barfield ◽  
M. J. Goglia

Abstract The problem of laminar channel flow has been investigated for the case of uniform fluid suction or injection through the channel walls. The solution can be divided into three steps: (a) A judicious choice of stream function reduces the Navier-Stokes equations to an ordinary, fourth-order, nonlinear differential equation, which contains a free parameter R, the Reynolds number based upon fluid velocity through the wall. (b) Since general analysis of this equation is intractable, the parameter R is eliminated by a suitable transformation. (c) The transformed, nonparametric equation yields to a series solution, valid and absolutely convergent for all R. From this general solution, expressions are developed for velocity components, pressure distribution, and wall-friction coefficient.


Author(s):  
Klaus Brun ◽  
Rainer Kurz ◽  
Harold R. Simmons ◽  
Marybeth G. Nored

To reduce combustion induced dynamic vibrations, a thorough understanding of a combustor’s acoustic characteristics at all operational conditions is imperative. Acoustic methods that rely on the solution of the wave equation are not adequate to accurately predict acoustic resonance in any real combustor with thermal gradient and velocities. Also, solutions of the 3-D transient Navier-Stokes equations are impractical, even with today’s fast computers. A method is described herein that utilizes an efficient one-dimensional transient Euler solver to determine all acoustic resonance frequencies of a combustor at a given operating condition. Area changes, viscous losses, local temperatures, and open/closed wall-boundaries are modeled with a two-equation model. The analysis method was utilized to determine the dynamic pressures of a 20 MW industrial gas turbine’s combustor. Results compared favorably to field testing results of the same gas turbine.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Rok Krpan ◽  
Boštjan Končar

The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such flows can be modelled as the flow of two components, where the concentration of one component in the mixing region is described as a passive scalar. The velocity field remains common over the entire computational domain, where the density and viscosity difference due to the concentration mainly affects the turbulent fluctuations in the mixing region. The numerical simulations are performed with the open source code OpenFOAM using two different approaches for turbulence modelling, Reynolds Averaged Navier Stokes equations (RANS) and Large Eddy Simulation (LES). The simulation results are discussed and compared with the benchmark experiment obtained within the frame of OECD/NEA benchmark test. A good agreement with experimental results is obtained in the case of the single liquid experiment. A high discrepancy between the simulated and the experimental velocity fluctuations in the case of mixing of the flows with the slightly different densities and viscosities triggered a systematic investigation of the modelling approaches that helped us to find out and interpret the main reasons for the disagreement.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaoyuan Wang ◽  
Sirui Li ◽  
Tingting Wang

AbstractWe consider the inertial Qian–Sheng’s Q-tensor dynamical model for the nematic liquid crystal flow, which can be viewed as a system coupling the hyperbolic-type equations for the Q-tensor parameter with the incompressible Navier–Stokes equations for the fluid velocity. We prove the existence and uniqueness of local in time strong solutions to the system with the initial data near uniaxial equilibrium. The proof is mainly based on the classical Friedrich method to construct approximate solutions and the closed energy estimate.


Sign in / Sign up

Export Citation Format

Share Document