scholarly journals Experimental Results of a Differential Angle-of-Arrival Based 2D Localization Method Using Signals of Opportunity

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
M. A. Aziz ◽  
C. T. Allen

This paper presents a study of differential AoA (Angle-of-Arrival) based 2D localization method utilizing FM radio signals (88 MHz–108 MHz) as Signals of Opportunity (SOP). Given prior knowledge of the transmitters’ position and signal characteristics, the proposed technique utilizes triangulation to localize receiver’s 2D position. Dual antenna interferometry provides the received signals’ AoA required for triangulation. Reliance on precise knowledge of antenna system’s orientation is removed by utilizing differential Angle of Arrivals (dAoAs). The 2D localization accuracy is improved by utilizing colocated transmitters, a concept proposed in this paper as supertowers. Analysis, simulation, and ground-based experiments have been presented; results showed that when the SNR (Signal-to-Noise Ratio) is higher than 45 dB, the proposed method localizes the receiver’s 2D position with an error of less than 15 m.

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 936
Author(s):  
Milton A. Garcés

Increased data acquisition by uncalibrated, heterogeneous digital sensor systems such as smartphones present new challenges. Binary metrics are proposed for the quantification of cyber-physical signal characteristics and features, and a standardized constant-Q variation of the Gabor atom is developed for use with wavelet transforms. Two different continuous wavelet transform (CWT) reconstruction formulas are presented and tested under different signal to noise ratio (SNR) conditions. A sparse superposition of Nth order Gabor atoms worked well against a synthetic blast transient using the wavelet entropy and an entropy-like parametrization of the SNR as the CWT coefficient-weighting functions. The proposed methods should be well suited for sparse feature extraction and dictionary-based machine learning across multiple sensor modalities.


Author(s):  
Н.Ю. ЛИБЕРОВСКИЙ ◽  
Д.С. ЧИРОВ ◽  
Н.Д. ПЕТРОВ

Целью данной работы является исследование эффективности алгоритма слепого разделения сигналов (СРСв задаче обнаружения цифровых фазоманипулированных радиосигналов. Рассмотрены классические методы СРС и критерии независимости сигналов. Исследована модель алгоритма СРС, основанного на вычислении размешивающей матрицы, которая приводит совместные кумулянты второго и четвертого порядков к нулю. Для исключения тривиального решения накладываются дополнительные ограничения на дисперсии сигналов. Приводится система уравнений для нахождения коэффициентов размешивающей матрицы. Показан вид коэффициентов размешивающей матрицы, приводящей сигналы к некоррелированному виду. Доказана возможность аналитического решения уравнения, связанного с равенством совместного кумулянта четвертого порядка к нулю. По результатам моделирования алгоритма СРС показано, что предложенный алгоритм позволяет обеспечить прием ФМ-2 радиосигнала на фоне гауссовой помехи. Выигрыш в отношении сигнал-помеха составляет не менее 2 дБ. The purpose of this work is to study the effectiveness of the blind signal separation algorithm in the problem of detecting digital PSK radio signals. Classical methods of blind signal separation and criteria of signal independence are considered. A model of a blind signal separation algorithm based on the calculation of a mixing matrix that reduces the joint cumulants of the second and fourth orders to zero is investigated. To eliminate the trivial solution, additional restrictions are imposed on the signal variances. A system of equations for finding the coefficients of the mixing matrix is given. The view of the coefficients of the mixing matrix, which leads the signals to an uncorrelated form, is shown. The possibility of an analytical solution of the equation associated with the equality of the joint cumulant of the fourth order to zero is proved. Based on the results of the simulation of the blind signal separation algorithm, it is shown that the proposed algorithm allows receiving the PSK-2 radio signal against the background of Gaussian interference. The gain in the signal-to-noise ratio is at least 2 dB.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Saleh O. Al-Jazzar

An angle of arrival (AOA) estimator is presented. Many applications require accurate AOA estimates such as wireless positioning and signal enhancement using space-processing techniques. The proposed AOA estimator depends on the Cholesky decomposition of the received signal autocorrelation matrix. The resultant decomposed matrices are used to modify the crosscorrelation matrix of the received signals at the antenna array doublets. The proposed method is named the Cholesky-decomposition-based-AOA (CDBA) estimator. In comparison with the TLS-ESPRIT algorithm which utilizes the eigenvalue decomposition (EVD) of the received signal autocorrelation and crosscorrelation matrices, the CDBA method has better performance than the TLS-ESPRIT algorithm especially in low signal-to-noise-ratio (SNR) cases. Simulations for the proposed CDBA method are shown to assess its performance.


2012 ◽  
Vol 468-471 ◽  
pp. 2296-2303
Author(s):  
Xiao Ping Zhang ◽  
Yang Wang

To solve the problem of acoustic source localization in wireless sensor networks (WSN) under interference of environmental noise, a novel acoustic source localization method in WSN based on Least Square Support Vector Regression (LSSVR) modeling (ASL-LRM) was proposed. The ideal measured values of acoustic sensors were used to compose feature vector at first. Then LSSVR models were built by LSSVR modeling on the mapping relation between feature vector and acoustic source coordinate. The acoustic source was then located by inputting feature vector composed of real measured values of the sensors into LSSVR models. The modeling parameters optimization method based on localization effect in sample locations was also discussed. Experiments were performed in 100 test locations. RMSE values by ASL-LRM method in 72-76 test locations were less than MLE method and reduced by 60%-74% at most. In lower signal-to-noise ratio case, there were 87 test locations where RMSE values by ASL-LRM method were less than 2 meters, while there were only 12 test locations by MLE method. It shows ASL-LRM method achieves better localization effects in a large part of the region surrounded by sensor nodes. It especially has advantage on the occasions like lower signal-to-noise ratio or high precision localization.


Author(s):  
Jinxiang Du ◽  
Benmao Zhang

The Cramér-Rao bound of target localization method based on time-of-arrival measurements is analyzed. For the localization error analysis, the CRLB is derived under the assumptions that the measurement errors are independent and characterized by zero-mean Gaussian distributed process with identical variance, which is not satisfied in the situation of localizing noncooperative targets. Cramér-Rao bound is deduced by using the fact that the variances of TOA measurements of different sensors are affected by the signal-to-noise ratio of the echo signal and are different from each other. Simulations of Monte Carlo experiments are carried out so as to verify the analytical results.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
W. Baumeister ◽  
R. Rachel ◽  
R. Guckenberger ◽  
R. Hegerl

IntroductionCorrelation averaging (CAV) is meanwhile an established technique in image processing of two-dimensional crystals /1,2/. The basic idea is to detect the real positions of unit cells in a crystalline array by means of correlation functions and to average them by real space superposition of the aligned motifs. The signal-to-noise ratio improves in proportion to the number of motifs included in the average. Unlike filtering in the Fourier domain, CAV corrects for lateral displacements of the unit cells; thus it avoids the loss of resolution entailed by these distortions in the conventional approach. Here we report on some variants of the method, aimed at retrieving a maximum of information from images with very low signal-to-noise ratios (low dose microscopy of unstained or lightly stained specimens) while keeping the procedure economical.


Sign in / Sign up

Export Citation Format

Share Document