Neural Algorithm for Radio Signals Modulation Classification of Satellite Communication Systems at Low Signal-to-Noise Ratio

Author(s):  
Sergey N. Kirillov ◽  
Andrey V. Batishchev
2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
E.P. Kadukov ◽  
◽  
I.K. Utimisheva ◽  

A method for automatic modulation classification (AMC) of spectral-effective radio signals generated based on various kinds of roll-off filters is presented. The developed method is intended for automatic radio monitoring (RM) of radio emission parameters without demodulation using digital oscilloscopes in order to control compliance with the discipline and radio communication regulations by users of satellite communication systems (SCS). It is proposed to AMC based on the results of the parameters analysis of the phase diagrams (PD) of radio signals. The proposed approach to AMC is based on the idea of displaying radio signals characterized by many different modulation parameters in the form of pattern in the parameter space of PD of continuous phase modulation radio signals (CPM). Developed an alphabet of classes and was proposed a dictionary of features for a variety of alternatives for CPM AMC. To assess the nature of changes in the parameters of the PD of radio signals, reference descriptions of specific classes of the a priori dictionary are obtained, taking into account changes in the variable parameters that form a set of recognition alternatives. The influence of the size of the analyzed fragment and the signal-to-noise ratio (SNR) under the influence of additive white Gaussian noise (AWGN), characteristic of satellite channels, on the quality for CPM AMC, has been estimated. The article substantiates the content of the main stages of the classification of CPM in the parameter space of PD. As a result of statistical experiments, estimates of the probabilities of correct for CPM AMC were obtained.


2018 ◽  
Vol 42 (1) ◽  
pp. 167-174 ◽  
Author(s):  
V. I. Parfenov ◽  
D. Y. Golovanov

An algorithm for estimating time positions and amplitudes of a periodic pulse sequence from a small number of samples was proposed. The number of these samples was determined only by the number of pulses. The performance of this algorithm was considered on the assumption that the spectrum of the original signal is limited with an ideal low-pass filter or the Nyquist filter, and conditions for the conversion from one filter to the other were determined. The efficiency of the proposed algorithm was investigated through analyzing in which way the dispersion of estimates of time positions and amplitudes depends on the signal-to-noise ratio and on the number of pulses in the sequence. It was shown that, from this point of view, the efficiency of the algorithm decreases with increasing number of sequence pulses. Besides, the efficiency of the proposed algorithm decreases with decreasing signal-to-noise ratio.It was found that, unlike the classical maximum likelihood algorithm, the proposed algorithm does not require a search for the maximum of a multivariable function, meanwhile characteristics of the estimates are practically the same for both these methods. Also, it was shown that the estimation accuracy of the proposed algorithm can be increased by an insignificant increase in the number of signal samples.The results obtained may be used in the practical design of laser communication systems, in which the multipulse pulse-position modulation is used for message transmission. 


2008 ◽  
Vol 5 (1) ◽  
pp. 95-100
Author(s):  
Baghdad Science Journal

In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).


Author(s):  
A. A. Paramonov ◽  
Van Zung Hoang

In the context of continuous improvement of radio prospecting and active radio jamming technics along with introduction of automated active countermeasures systems (ACS), the frequency-hopping spread spectrum (FHSS) radio communication systems (RCS) are widely used in order to improve reliability and noise immunity of data transmission. The noise immunity of the RCS affected by unintentional or deliberate interference can be significantly perfected by the combined use of frequency-time division and antinoise coding. This paper explores the case when the interference created by an ACS system with a limited transmitter power covers a part of the RCS frequency range. The receiver gets input mix of the wanted signal, the receiver noise, and probably a deliberate interference also considered as a noise. The article analyzes the noise immunity of signals reception with FHSS in the low-speed radio systems with joint use of frequency-time division of information subsymbols and noise combating codes when the deliberate interference destructively impacts a part of the RCS working band. Dependence of the bit error probability on the signal-to-noise ratio is calculated for the joint use of frequency division of information subsymbols and noise combating codes. It is shown that due to effective use of the frequency-energy resource of a radio line, considering the use of correction codes, a quite high noise immunity of RCS under the influence of deliberate interference can be assured. The indicated dependences of the error probability on the signal-to-noise ratio confirm that the reliability of data transmission can be significantly increased by the proper combination of signal spectrum spreading, applying of correction codes, and frequency division of subsymbols followed by their weight processing.


2019 ◽  
Vol 11 (2) ◽  
pp. 270-277
Author(s):  
Hussein Abdullah Leftah ◽  
Husham Lateef Swadi

Impulsive noise is considered as one of the major source of disturbance in the state-of-the-art multicarrier (MC) communication systems. Therefore, several techniques are being constantly proposed to eliminate the effect of such noise. In this work, a time domain matrix interleaved is compiled with a single carrier frequency domain equalizer (SC-FDE) is proposed to reduce the deleterious effects of impulsive noise. A mathematical model for the proposed scheme is also presented in this paper. Simulation results show that the proposed technique superiors the interleaved multicarrier system where the proposed scheme can completely avoid the error floors not only at high signal-to-noise ratio (SNR) but also at heavily distributed impulsive noise. The bit-error-rate (BER) of the alternative proposed scheme decreases as the signal-to-noise ratio (SNR) increases whereas the BER of the standard system suffers from error-floors with a constant BER at about 10-3 for about 8 dB SNR for medium and heavily impulsive noise.


2011 ◽  
Vol 367 ◽  
pp. 233-240 ◽  
Author(s):  
T. Eneh ◽  
P. Rapajic ◽  
K. Anang ◽  
Bello Lawal

The combination of MIMO signal processing with OFDM is a solution to achieving high data rates for next generation wireless communication systems operating in frequency selective fading environments. To realize the extension of the MIMO with OFDM, a number of changes are required in the baseband signal processing. The developed adaptive Multiuser Detection in MIMO OFDM(AMUD) scheme performs better compared to non adaptive MIMO OFDM, at low Signal to noise ratio (SNR), it shows good performance in computational complexity, bit error rate (BER) and capacity. Simulation results show that the developed algorithm sum rate capacity is very close to MIMO theoretical upper bound (21.5 bits/s/Hz at signal to noise ratio of 20dB) which strongly indicate it’s applicability to the uplink channel where power transmission at the mobile station is a constraint. The BER performance of the developed scheme shows that, as the number of antenna increases, the 8 x 8 AMUD provides a 2dB gain compared to known non adaptive MIMO OFDMO at low SNR.


2010 ◽  
Vol 40-41 ◽  
pp. 272-276
Author(s):  
Li Di Wang ◽  
Nan Zhu ◽  
Jin Kai Li

Wavelet denoising method is applied in the measurement voltage signals in this paper. Noise reduction is important for signal preprocessing in order to achieve many objects such as the improvement of accuracy of modal analysis and electrical parameter identification, the effective extraction of features and auto-matic classification of different kinds of signals. The voltage signals measured from one 35Kv bus are used for the preprocessing research. The denoising effect is evaluated by three parameters, i.e. signal to noise ratio, mean squared error, and capture ability of step points. Compared with the traditional methods including mean filtering and medial filtering, wavelet method is superior in signal to noise ratio and mean squared error.


Sign in / Sign up

Export Citation Format

Share Document