scholarly journals Spatial Distribution and Temporal Trend of Tropospheric NO2 over the Wanjiang City Belt of China

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Xie ◽  
Wei Wang ◽  
Qinglong Wang

We utilize the tropospheric NO2 columns derived from the observations of Ozone Monitoring Instrument (OMI) onboard AURA to analyze the spatial distributions and temporal trends of NO2 in Wanjiang City Belt (WCB) of China from 2005 to 2016. The aim of this study is to assess the effect of industrial transfer policy on the air quality in WCB. Firstly, we used the surface in situ NO2 concentrations to compare with the OMI-retrieved tropospheric NO2 columns in order to verify the accuracy of the satellite data over the WCB area. Although it is difficult to compare the two datasets directly, the comparison results prove the accuracy of the OMI-retrieved tropospheric NO2 columns in cities of WCB. Then, the spatial distributions of the annual averaged tropospheric NO2 total columns over Anhui Province show that NO2 columns were considerably higher in WCB than those in other areas of Anhui. Also, we compared the spatial distributions of the total NO2 columns in 2005 through 2010 and in 2011 through 2016 and found that the total NO2 columns in WCB increased by 19.9%, while the corresponding value increased only 13.9% in other Anhui areas except the WCB area. Furthermore, the temporal variations of NO2 columns show that although the NO2 columns over WCB and Anhui increased significantly from 2005 to 2011, they decreased sharply from 2011 to 2016 due to the strict emission reduction measures in China. Finally, the HYSPLIT model was used to analyze the origins of NO2 and transport pathways of air masses in a typical city, Ma’anshan city.

2016 ◽  
Author(s):  
Xiaoping Wang ◽  
Jiao Ren ◽  
Ping Gong ◽  
Chuanfei Wang ◽  
Yonggang Xue ◽  
...  

Abstract. The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here XAD-based passive air samplers (PAS) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT) -related chemicals delivered by Indian Monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet where both DDT and HCB were the dominant chemicals. Based on 5-year of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the on-going usage of DDT in India. This paper demonstrates the possibility of using POPs fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POPs time trends.


2020 ◽  
Author(s):  
Yikun Yang ◽  
Chuanfeng Zhao ◽  
Quan Wang ◽  
Zhiyuan Cong ◽  
Xingchuan Yang ◽  
...  

Abstract. To better understand the aerosol properties over the Arctic, Antarctic, and Tibetan Plateau (TP), the aerosol optical properties were investigated using 13 years CALIPSO L3 data, and the back trajectories for air masses were also simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results show that the aerosol optical depth (AOD) has obvious spatial and seasonal variation characteristics, and the aerosol loading over Eurasia, Ross Sea, and South Asia is relatively large. The annual average AOD in the Arctic, Antarctic, and TP are 0.046, 0.025, and 0.098, respectively. The Arctic and Antarctic regions have larger AOD values in winter and spring, while the TP in spring and summer. There are no significant temporal trends of AOD anomalies in the three study regions. Clean marine and dust-related aerosols are the dominant types over ocean and land respectively in both the Arctic and Antarctic, while dust-related aerosol types have greater occurrence frequency (OF) over the TP. The OF of dust-related and elevated smoke is large for a broad range of heights, indicating that they are likely transported aerosols, while other types of aerosols mainly occurred at heights below 2 km in the Antarctic and Arctic. The maximum OF of dust-related aerosols mainly occurs at 6 km altitude over the TP. The analysis of back trajectories of the air masses shows large differences among different regions and seasons. The Arctic region is more vulnerable to mid-latitude pollutants than the Antarctic region, especially in winter and spring, while the air masses in the TP are mainly from the Iranian Plateau, Tarim Basin, and South Asia.


2019 ◽  
Vol 19 (10) ◽  
pp. 7183-7207 ◽  
Author(s):  
Jing Wei ◽  
Yiran Peng ◽  
Rashed Mahmood ◽  
Lin Sun ◽  
Jianping Guo

Abstract. Satellite-derived aerosol products provide long-term and large-scale observations for analysing aerosol distributions and variations, climate-scale aerosol simulations, and aerosol–climate interactions. Therefore, a better understanding of the consistencies and differences among multiple aerosol products is important. The objective of this study is to compare 11 global monthly aerosol optical depth (AOD) products, which are the European Space Agency Climate Change Initiative (ESA-CCI) Advanced Along-Track Scanning Radiometer (AATSR), Advanced Very High Resolution Radiometer (AVHRR), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Visible Infrared Imaging Radiometer (VIIRS), and POLarization and Directionality of the Earth's Reflectance (POLDER) products. AErosol RObotic NEtwork (AERONET) Version 3 Level 2.0 monthly measurements at 308 sites around the world are selected for comparison. Our results illustrate that the spatial distributions and temporal variations of most aerosol products are highly consistent globally but exhibit certain differences on regional and site scales. In general, the AATSR Dual View (ADV) and SeaWiFS products show the lowest spatial coverage with numerous missing values, while the MODIS products can cover most areas (average of 87 %) of the world. The best performance is observed in September–October–November (SON) and the worst is in June–July–August (JJA). All the products perform unsatisfactorily over northern Africa and Middle East, southern and eastern Asia, and their coastal areas due to the influence from surface brightness and human activities. In general, the MODIS products show the best agreement with the AERONET-based AOD values on different spatial scales among all the products. Furthermore, all aerosol products can capture the correct aerosol trends at most cases, especially in areas where aerosols change significantly. The MODIS products perform best in capturing the global temporal variations in aerosols. These results provide a reference for users to select appropriate aerosol products for their particular studies.


2021 ◽  
Vol 21 (6) ◽  
pp. 4849-4868
Author(s):  
Yikun Yang ◽  
Chuanfeng Zhao ◽  
Quan Wang ◽  
Zhiyuan Cong ◽  
Xingchuan Yang ◽  
...  

Abstract. To better understand the aerosol properties over the Arctic, Antarctic and Tibetan Plateau (TP), the aerosol optical properties were investigated using 13 years of CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) L3 data, and the back trajectories for air masses were also simulated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results show that the aerosol optical depth (AOD) has obvious spatial- and seasonal-variation characteristics, and the aerosol loading over Eurasia, Ross Sea and South Asia is relatively large. The annual-average AODs over the Arctic, Antarctic and TP are 0.046, 0.024 and 0.098, respectively. Seasonally, the AOD values are larger from late autumn to early spring in the Arctic, in winter and spring in the Antarctic, and in spring and summer over the TP. There are no significant temporal trends of AOD anomalies in the three study regions. Clean marine and dust-related aerosols are the dominant types over ocean and land, respectively, in both the Arctic and Antarctic, while dust-related aerosol types have greater occurrence frequency (OF) over the TP. The OF of dust-related and elevated smoke is large for a broad range of heights, indicating that they are likely transported aerosols, while other types of aerosols mainly occurred at heights below 2 km in the Antarctic and Arctic. The maximum OF of dust-related aerosols mainly occurs at 6 km altitude over the TP. The analysis of back trajectories of the air masses shows large differences among different regions and seasons. The Arctic region is more vulnerable to mid-latitude pollutants than the Antarctic region, especially in winter and spring, while the air masses in the TP are mainly from the Iranian Plateau, Tarim Basin and South Asia.


2016 ◽  
Vol 16 (11) ◽  
pp. 6901-6911 ◽  
Author(s):  
Xiaoping Wang ◽  
Jiao Ren ◽  
Ping Gong ◽  
Chuanfei Wang ◽  
Yonggang Xue ◽  
...  

Abstract. The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene–divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Yongxiao Ge

This study investigated the temporal patterns of annual and seasonal river runoff data at 13 hydrological stations in the Lake Issyk-Kul basin, Central Asia. The temporal trends were analyzed using the innovative trend analysis (ITA) method with significance testing. The ITA method results were compared with the Mann-Kendall (MK) trend test at a 95% confidence level. The comparison results revealed that the ITA method could effectively identify the trends detected by the MK trend test. Specifically, the MK test found that the time series percentage decreased from 46.15% in the north to 25.64% in the south, while the ITA method revealed a similar rate of decrease, from 39.2% to 29.4%. According to the temporal distribution of the MK test, significantly increasing (decreasing) trends were observed in 5 (0), 6 (2), 4 (3), 8 (0), and 8 (1) time series in annual, spring, summer, autumn, and winter river runoff data. At the same time, the ITA method detected significant trends in 7 (1), 9 (3), 6(3), 9 (3), and 8 (2) time series in the study area. As for the ITA method, the “peak” values of 24 time series (26.97%) exhibited increasing patterns, 25 time series (28.09%) displayed increasing patterns for “low” values, and 40 time series (44.94%) showed increasing patterns for “medium” values. According to the “low”, “medium”, and “peak” values, five time series (33.33%), seven time series (46.67%), and three time series (20%) manifested decreasing trends, respectively. These results detailed the patterns of annual and seasonal river runoff data series by evaluating “low”, “medium”, and “peak” values.


2018 ◽  
Vol 76 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Benoit Lalonde ◽  
Christine Garron ◽  
Alice Dove ◽  
John Struger ◽  
Kristina Farmer ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 539
Author(s):  
Abdelhaleem Khader ◽  
Randal S. Martin

Few air pollutant studies within the Palestinian territories have been reported in the literature. In March–April and May–June of 2018, three low-cost, locally calibrated particulate monitors (AirU’s) were deployed at different elevations and source areas throughout the city of Nablus in Northern West Bank, Palestine. During each of the three-week periods, high but site-to-site similar particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and less than 10 µm (PM10) concentrations were observed. The PM2.5 concentrations at the three sampling locations and during both sampling periods averaged 38.2 ± 3.6 µg/m3, well above the World Health Organization’s (WHO) 24 h guidelines. Likewise, the PM10 concentrations exceeded or were just below the WHO’s 24 h guidelines, averaging 48.5 ± 4.3 µg/m3. During both periods, short episodes were identified in which the particulate levels at all three sites increased substantially (≈2×) above the regional baseline. Air mass back trajectory analyses using U.S. National Oceanic and Atmospheric Administration’s (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested that, during these peak episodes, the arriving air masses spent recent days over desert areas (e.g., the Saharan Desert in North Africa). On days with regionally low PM2.5 concentrations (≈20 µg/m3), back trajectory analysis showed that air masses were directed in from the Mediterranean Sea area. Further, the lower elevation (downtown) site often recorded markedly higher particulate levels than the valley wall sites. This would suggest locally derived particulate sources are significant and may be beneficial in the identification of potential remediation options.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
D. G. Kaskaoutis ◽  
P. G. Kosmopoulos ◽  
H. D. Kambezidis ◽  
P. T. Nastos

Aerosol optical depth at 550 nm () and fine-mode (FM) fraction data from Terra-MODIS were obtained over the Greater Athens Area covering the period February 2000–December 2005. Based on both and FM values three main aerosol types have been discriminated corresponding to urban/industrial aerosols, clean maritime conditions, and coarse-mode, probably desert dust, particles. Five main sectors were identified for the classification of the air-mass trajectories, which were further used in the analysis of the ( and FM data for the three aerosol types). The HYSPLIT model was used to compute back trajectories at three altitudes to investigate the relation between -FM and wind sector depending on the altitude. The accumulation of local pollution is favored in spring and corresponds to air masses at lower altitudes originating from Eastern Europe and the Balkan. Clean maritime conditions are rare over Athens, limited in the winter season and associated with air masses from the Western or Northwestern sector. The coarse-mode particles origin seems to be more complicated proportionally to the season. Thus, in summer the Northern sector dominates, while in the other seasons, and especially in spring, the air masses belong to the Southern sector enriched with Saharan dust aerosols.


Sign in / Sign up

Export Citation Format

Share Document