scholarly journals A Novel Dynamic Multicriteria Decision-Making Approach for Low-Carbon Supplier Selection of Low-Carbon Buildings Based on Interval-Valued Triangular Fuzzy Numbers

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Xia Cao ◽  
Zeyu Xing ◽  
Yuqi Sun ◽  
Shi Yin

Due to the lack of natural resources and environmental problems which have been appearing increasingly, low-carbon buildings are more and more involved in the construction industry. The selection of low-carbon supplier is a significant part in the process of low-carbon building construction projects. In this paper, we propose a novel dynamic multicriteria decision-making approach for low-carbon supplier selection in the process of low-carbon building construction projects to deal with these problems. First, the paper establishes 5 main criteria and 17 subcriteria for low-carbon supplier selection in the process of low-carbon building construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the basic concept and properties of the interval-valued triangular fuzzy number intuitionistic fuzzy weighted Bonferroni means (IVTFNIFWBM) operators and the objective information entropy and TOPSIS-based Euclidean distance to calculate the comprehensive evaluation results of potential low-carbon suppliers. The proposed method is much easier for constructors to select low-carbon supplier and make the localization of low-carbon supplier more practical and accurate in the process of building construction projects. Finally, a case study about a low-carbon building project is given to verify practicality and effectiveness of the proposed approach.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shi Yin ◽  
Baizhou Li ◽  
Hengmin Dong ◽  
Zeyu Xing

Nowadays, due to the lack of natural resources and environment problems which have been appearing increasingly, green building is more and more involved in the construction industry. The evaluation and selection of green supplier are a significant part of the development of green building. In this paper, we propose a new dynamic multicriteria decision-making approach in construction projects under time sequence to deal with these problems. First, the paper establishes 4 main criteria and 17 subcriteria for green supplier selection in construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the interval-valued intuitionistic fuzzy geometric weighted Heronian means (IVIFGWHM) operator and multitarget nonlinear programming model to calculate the comprehensive evaluation results of potential green suppliers. The proposed method is much easier for constructors to select green supplier and make the localization of green supplier more practical and accurate in construction projects. Finally, a case study about a green building project is given to verify practicality and effectiveness of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qinghua Pang ◽  
Tiantian Yang ◽  
Mingzhen Li ◽  
Yi Shen

Due to the increasing awareness of global warming and environmental protection, many practitioners and researchers have paid much attention to the low-carbon supply chain management in recent years. Green supplier selection is one of the most critical activities in the low-carbon supply chain management, so it is important to establish the comprehensive criteria and develop a method for green supplier selection in low-carbon supply chain. The paper proposes a fuzz-grey multicriteria decision making approach to deal with these problems. First, the paper establishes 4 main criteria and 22 subcriteria for green supplier selection. Then, a method integrating fuzzy set theory and grey relational analysis is proposed. It uses the membership function of normal distribution to compare each supplier and uses grey relation analysis to calculate the weight of each criterion and improves fuzzy comprehensive evaluation. The proposed method can make the localization of individual green supplier more objectively and more accurately in the same trade. Finally, a case study in the steel industry is presented to demonstrate the effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiang Ziquan ◽  
Yang Jiaqi ◽  
Muhammad Hamza Naseem ◽  
Xiang Zuquan ◽  
Liang Xueheng

With the increasingly fierce competition in the global shipbuilding industry, shipbuilding enterprises need to maintain competitiveness and cope with rapid changes. In this case, shipbuilding enterprises need to establish effective supply chain management. Among them, choosing the right supplier is one of the most critical activities. The supplier selection of shipbuilding enterprises is considered a complex multicriteria decision-making (MCDM) problem that attracts much attention due to intuitionistic fuzzy sets to deal with possible imprecision and fuzziness in real life. Based on this, this paper proposes a new method based on the intuitionistic fuzzy SWARA (stepwise weight assessment ratio analysis) and COPRAS (complex proportional assessment) method to select shipbuilding enterprise suppliers which is a new research area. First of all, different weights are given to each expert evaluation result according to their position, educational background, and working years. The supplier index’s weight is determined based on the intuitionistic fuzzy SWARA method, and it is easy to understand and operate. The ranking of suppliers is determined by the intuitionistic fuzzy COPRAS method. This method considers all kinds of uncertainties and evaluates the utility index and the cost index of alternative suppliers. Finally, taking a shipbuilding enterprise as an example, applying the intuitionistic fuzzy SWARA-COPRAS method is illustrated. Compared with other methods and sensitivity analysis, it shows that the intuitionistic fuzzy multicriteria decision-making method is effective and stable in shipbuilding enterprises.


SAGE Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215824402110360
Author(s):  
Fengsheng Chien ◽  
Chia-Nan Wang ◽  
Ka Yin Chau ◽  
Van Thanh Nguyen ◽  
Viet Tinh Nguyen

The uses and management of capital is extremely important to the operation of any businesses. However, not all businesses have available capital, so the use of loans in many different forms is always an effective solution in managing corporate finance. Accompanying with businesses, many financial leasing companies have implemented products and programs to lend money to businesses with low interest rates. So, choosing the best financial leasing company is a primary concern of businesses. To increase competitiveness, financial leasing companies often offer preferential conditions to attract businesses. Choosing the best financial leasing service to leasing is important and necessary to those businesses. Thus, the selection of a financial leasing company by small and medium enterprises benefits from the application of Multicriteria Decision-Making (MCDM) methods which allows the decision maker to consider various qualitative and quantitative criteria. In this article, the author applied Fuzzy Analytical Network Process (FANP) to calculate the related criteria weights of the financial leasing company selection problem of businesses. Then, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is applied to rank the potential decision-making units. This research establishes one complete and efficient model for financial leasing company selection using FANP and TOPSIS methods. The proposed model is then applied into a real-world case study to demonstrate its feasibility.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Hamurcu ◽  
Tamer Eren

The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in attack and destroy missions. These vehicles have been winning more features together with developing technology in todays world. In addition, they have been varying with different features. A systematic and efficient approach for the selection of the UAV is necessary to choose a best alternative for the critical tasks under consideration. The multicriteria decision-making (MCDM) approaches that are analytic processes are well suited to deal intricacy in selection of alternative vehicles. This study also proposes an integrated methodology based on the analytic hierarch process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) to evaluate UAV alternatives for selection process. Firstly, AHP, a MCDM method, is used to determine the weights of each critical factor. Subsequently, it is utilized with the TOPSIS approach to rank the vehicle alternatives in the decision problem. Result of the study shows that UAV-1 was selected as the most suitable vehicle. In results, it is seen that the weights of the evaluation criteria found by using AHP affect the decision-making process. Finally, the validation and sensitivity analysis of the solution are made and discussed.


Sign in / Sign up

Export Citation Format

Share Document