scholarly journals Apparent Horizon and Gravitational Thermodynamics of Universe in the Eddington-Born-Infeld Theory

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jia-Cheng Ding ◽  
Qi-Qi Fan ◽  
Cong Li ◽  
Ping Li ◽  
Jian-Bo Deng

The thermodynamics of Universe in the Eddington-Born-Infeld (EBI) theory was restudied by utilizing the holographic-style gravitational equations that dominate the dynamics of the cosmical apparent horizon ΥA and the evolution of Universe. We started in rewriting the EBI action of the Palatini approach into the Bigravity-type action with an extra metric qμν. With the help of the holographic-style dynamical equations, we discussed the property of the cosmical apparent horizon ΥA including timelike, spacelike, and null characters, which depends on the value of the parameter of state wm in EBI Universe. The unified first law for the gravitational thermodynamics and the total energy differential for the open system enveloped by ΥA in EBI Universe were obtained. Finally, applying the positive-heat-out sign convention, we derived the generalized second law of gravitational thermodynamics in EBI Universe.

2014 ◽  
Vol 23 (08) ◽  
pp. 1450071 ◽  
Author(s):  
Ramón Herrera ◽  
Nelson Videla

In this paper, we examine the validity of the generalized second law (GSL) of gravitational thermodynamics in the context of interacting f(R) gravity. We take into account that the boundary of the universe to be confined by the dynamical apparent horizon in a flat FRW universe. We study the effective equation of state, deceleration parameter and GSL in this interaction-framework. We find that the evolution of the total entropy increases through the interaction term. As an example, we consider a f(R) gravity with a power-law dependence on the curvature R. Here, we find exact solutions for a model in which the interaction term is related to the total energy density of matter.


2019 ◽  
Vol 35 (04) ◽  
pp. 1950360 ◽  
Author(s):  
A. S. Sefiedgar ◽  
M. Mirzazadeh

Thermodynamics of the evolving Lorentzian wormhole at the apparent horizon is investigated in [Formula: see text] gravity. Redefining the energy density and the pressure, the continuity equation is satisfied and the field equations in [Formula: see text] gravity reduce to the ones in general relativity. However, the energy–momentum tensor includes all the corrections from [Formula: see text] gravity. Therefore, one can apply the standard entropy-area relation within [Formula: see text] gravity. It is shown that there may be an equivalency between the field equations and the first law of thermodynamics. It seems that an equilibrium thermodynamics may be held on the apparent horizon. The validity of the generalized second law of thermodynamics (GSL) is also investigated in the wormholes.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Salman Rafique

We consider the particle creation scenario in the dynamical Chern-Simons modified gravity in the presence of perfect fluid equation of state p=(γ-1)ρ. By assuming various modified entropies (Bekenstein entropy logarithmic entropy, power law correction, and Renyi entropy), we investigate the first law of thermodynamics and generalized second law of thermodynamics on the apparent horizon. In the presence of particle creation rate, we discuss the generalized second law of thermodynamics and thermal equilibrium condition. It is found that thermodynamics laws and equilibrium condition remain valid under certain conditions of parameters.


2010 ◽  
Vol 19 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
M. R. SETARE ◽  
A. SHEYKHI

We examine the validity of the generalized second law of thermodynamics in a non-flat universe in the presence of viscous dark energy. First we assume that the universe is filled only with viscous dark energy. Then, we extend our study to the case where there is an interaction between viscous dark energy and pressureless dark matter. We examine the time evolution of the total entropy, including the entropy associated with the apparent horizon and the entropy of the viscous dark energy inside the apparent horizon. Our study shows that the generalized second law of thermodynamics is always protected in a universe filled with interacting viscous dark energy and dark matter in a region enclosed by the apparent horizon. Finally, we show that the the generalized second law of thermodynamics is fulfilled for a universe filled with interacting viscous dark energy and dark matter by taking into account the Casimir effect.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750182 ◽  
Author(s):  
Ali İhsan Keskin ◽  
Irfan Acikgoz

In this study, the validity of the generalized second law of thermodynamics (GSLT) has been investigated in F(R, G) gravity. We consider that the boundary of the universe is surrounded by an apparent horizon in the spatially flat Friedmann–Robertson–Walker (FRW) universe, and we take into account the Hawking temperature on the horizons. The unified solutions of the field equations corresponding to gravity theory have been applied to the validity of the GSLT frame, and in this way, both the solutions have been verified and all the expansion history of the universe has been shown in a unified picture.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850137 ◽  
Author(s):  
Onur Siginc ◽  
Mustafa Salti ◽  
Hilmi Yanar ◽  
Oktay Aydogdu

Assuming the universe as a thermodynamical system, the second law of thermodynamics can be extended to another form including the sum of matter and horizon entropies, which is called the generalized second law of thermodynamics. The generalized form of the second law (GSL) is universal which means it holds both in non-equilibrium and equilibrium pictures of thermodynamics. Considering the universe is bounded by a dynamical apparent horizon, we investigate the nature of entropy function for the validity of GSL in the scalar–tensor–vector (STEVE) theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document