scholarly journals Fabrication and Characterization of CH3NH3PbI3 Perovskite Solar Cells Added with Polysilanes

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Takeo Oku ◽  
Junya Nomura ◽  
Atsushi Suzuki ◽  
Hiroki Tanaka ◽  
Sakiko Fukunishi ◽  
...  

Effects of polysilane additions on CH3NH3PbI3 perovskite solar cells were investigated. Photovoltaic cells were fabricated by a spin-coating method using perovskite precursor solutions with polymethyl phenylsilane, polyphenylsilane, or decaphenyl cyclopentasilane (DPPS), and the microstructures were examined by X-ray diffraction and optical microscopy. Open-circuit voltages were increased by introducing these polysilanes, and short-circuit current density was increased by the DPPS addition, which resulted in the improvement of the photoconversion efficiencies to 10.46%. The incident photon-to-current conversion efficiencies were also increased in the range of 400~750 nm. Microstructure analysis indicated the formation of a dense interfacial structure by grain growth and increase of surface coverage of the perovskite layer with DPPS, and the formation of PbI2 was suppressed, leading to the improvement of photovoltaic properties.

Science ◽  
2017 ◽  
Vol 356 (6345) ◽  
pp. 1376-1379 ◽  
Author(s):  
Woon Seok Yang ◽  
Byung-Wook Park ◽  
Eui Hyuk Jung ◽  
Nam Joong Jeon ◽  
Young Chan Kim ◽  
...  

The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
I. J. Ogundana ◽  
S. Y. Foo

Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850102
Author(s):  
Xiude Yang ◽  
Debei Liu ◽  
Ping Li ◽  
Bo Wu ◽  
Haishen Huang ◽  
...  

By adopting N, N-Dimethylformamide (DMF) atmosphere annealing at room temperature, planar perovskite solar cells with a p-i-n structure of ITO/PEDOT:PSS/Perovskite/PCBM/C[Formula: see text]/Al are fabricated by a simple one-step solution process in ambient air with humidity around 50%, and the influence of DMF atmosphere on perovskite solar cells (PSCs) is systematically investigated. Compared to the reference device without DMF reaction, the perovskite films treated by modest DMF annealing show a better distribution and a higher densification, and thus the power conversion efficiency (PCE), short circuit current density ([Formula: see text] and fill factor (FF) are increased by about 17%, 8% and 6%, respectively. This work displays the importance of solvent annealing for perovskite film prepared by the one-step spin-coating method, and possibly provides a simple and cost-effective way to efficiently fabricate PSCs in ambient air.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 433-440
Author(s):  
Sri Wuryanti

Abstract In this study, analysis was performed of the macro characterization of solar cells with chlorophyll dye from Syzygium paniculatum, using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Solar cells based on titanium dioxide (TiO2) nanomaterial and chlorophyll dye from S. paniculatum can increase efficiency due to flavonoids and batulinic acid content. Photoanode TiO2 is one of the essential factors determining the photovoltaic properties of dye-sensitized solar cells (DSSCs) and shade, which broadens the absorption spectrum. Furthermore, the method used in this research involved varying the colour of the S. paniculatum leaves, namely red (SP-Red), green (SP-Green) and a red–green mix (SP-Mix). From a macro analysis, SEM observations resulted in agglomerated and aggregated TiO2-polyethylene glycol (PEG)-dye layers with irregular shapes. EDX observation resulted in a peak in Ti at 5 keV and all constituents were detected with an O:Ti ratio of 3.47:1 for FTO-TiO2/PEG using SP-Green. Measurement of voltage-current (IV) using a digital multimeter indicated that the best occurred in the DSSC with SP-Green, resulting in a short-circuit current density (Isc) of 0.0047 mA/cm2, an open-circuit voltage (Voc) of 0.432 V, a charging factor (FF) of 0.749 and an efficiency (η) of 3.724%.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


Sign in / Sign up

Export Citation Format

Share Document