scholarly journals Generalized Beamforming Design for Cooperative MIMO Multirelay Networks with Infinite Constraints and Imperfect CSI

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Haiyang Yu ◽  
Wei Duan ◽  
Qiang Sun ◽  
Xia Wang ◽  
Jue Wang ◽  
...  

A generalized base station-relay-user equipment (BS-Relay-UE) beamforming design is investigated for a cooperative multiple-input multiple-output (MIMO) multirelay networks with imperfect channel state information (CSI). In order to minimize the worst-case mean square error (MSE) which is subject to a semi-infinite (SI) relay power constraints, a generalized optimal beamforming structure for the relay amplifying matrix is effectively proposed, and then the SI relay power constraints are converted into linear matrix inequalities (LMIs) version. In such conversion, the objective problem recasts as a decoupled biconvex semidefinite programming (SDP) one which can be efficiently solved by the proposed alternating algorithm. The system performance has been verified in terms of worst-case MSE using a set of qualitative analyses. The results show us that the proposed beamforming method outperforms the conventional schemes and can also effectively reduce the computational complexity when it is compared to the cutting-set schemes and also to the nonrobust ones.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3540 ◽  
Author(s):  
Yurong Wang ◽  
Aijun Liu ◽  
Kui Xu ◽  
Xiaochen Xia

Energy supply and information backhaul are critical problems for wireless sensor networks deployed in remote places with poor infrastructure. To deal with these problems, this paper proposes an airborne massive multiple-input multiple-output (MIMO) system for wireless energy transfer (WET) and information transmission. An air platform (AP) equipped with a two-dimensional rectangular antenna array is employed to broadcast energy and provide wireless access for ground sensors. By exploiting the statistical property of air-terrestrial MIMO channels, the energy and information beamformers are jointly designed to maximize the average received signal-to-interference-plus-noise ratio (SINR), which gives rise to a statistical max-SINR beamforming scheme. The scheme does not rely on the instantaneous channel state information, but still requires large numbers of RF chains at AP. To deal with this problem, a heuristic strongest-path energy and information beamforming scheme is proposed, which can be implemented in the analog-domain with low computational and hardware complexity. The analysis of the relation between the two schemes reveals that, with proper sensor scheduling, the strongest-path beamforming is equivalent to the statistical max-SINR beamforming when the number of AP antennas tends to infinity. Using the asymptotic approximation of average received SINR at AP, the system parameters, including transmit power, number of active antennas of AP and duration of WET phase, are optimized jointly to maximize the system energy efficiency. The simulation results demonstrate that the proposed schemes achieve a good tradeoff between system performance and complexity.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Author(s):  
Kan Chen ◽  
Bala Natarajan

Over the last decade, physical layer secret key generation (PHY-SKG) techniques that exploit reciprocity of wireless channels have attracted considerable interest among researchers in the field of wireless communication. Compared to traditional cryptographic methods, PHY-SKG techniques offer the following advantages: a computationally bounded adversary does not need to be assumed; PHY-SKG avoids the requirement of key management, and secret keys can be dynamically replenished. Additionally, PHY-SKG can enhance existing security schemes because it operates independently of higher layer security schemes. However, a key drawback of PHY-SKG is low secret key generation rate (SKGR), a critical performance metric. Therefore, the role of advanced network technologies (e.g., multiple input multiple output (MIMO) and cooperative MIMO) must be explored to enhance SKGR. This paper describes how MIMO and cooperative MIMO techniques can enhance SKGR.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1844
Author(s):  
Minhoe Kim ◽  
Woongsup Lee ◽  
Dong-Ho Cho

In this paper, we investigate a deep learning based resource allocation scheme for massive multiple-input-multiple-output (MIMO) communication systems, where a base station (BS) with a large scale antenna array communicates with a user equipment (UE) using beamforming. In particular, we propose Deep Scanning, in which a near-optimal beamforming vector can be found based on deep Q-learning. Through simulations, we confirm that the optimal beam vector can be found with a high probability. We also show that the complexity required to find the optimum beam vector can be reduced significantly in comparison with conventional beam search schemes.


Author(s):  
Ravisankar Malladi ◽  
Manoj Kumar Beuria ◽  
Ravi Shankar ◽  
Sudhansu Sekhar Singh

In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Monchai Lertsutthiwong ◽  
Thinh Nguyen ◽  
Bechir Hamdaoui

We develop a framework that exploits network coding (NC) and multiple-input/multiple-output (MIMO) techniques, jointly together, to improve throughput of downlink broadcast channels. Specifically, we consider a base station (BS) equipped with multiple transmit antennas that serves multiple mobile stations (MSs) simultaneously by generating multiple signal beams. Given the large number of MSs and the small number of transmit antennas, the BS must decide, at any transmission opportunity, which group of MSs it should transmit packets to, in order to maximize the overall throughput. We propose two algorithms for grouping MSs that take advantage of NC and the orthogonality of user channels to improve the overall throughput. Our results indicate that the proposed techniques increase the achievable throughput significantly, especially in highly lossy environments.


Sign in / Sign up

Export Citation Format

Share Document