scholarly journals Numerical Modeling of Reactive Transport and Self-Sealing Processes in the Fault-Controlled Geothermal System of the Guide Basin, China

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhaoyun Hou ◽  
Tianfu Xu ◽  
Guanhong Feng ◽  
Bo Feng ◽  
Yilong Yuan ◽  
...  

Strong chemical reactions in the geothermal systems may cause sealing of fractures, which reduces the permeability in the reservoir and subsequently affects the heat production. However, it is difficult to reveal the sealing range in a deeply buried reservoir based on a limited number of downhole logs. This study recreated the sealing processes of the fault-controlled geothermal system in the Guide Basin, China, by reactive transport modeling. The modeling domain was discretized based on multiple interacting continua (MINC) approach, to address the nonequilibrium heat transport processes between the matrix and conduit in the fractured fault damage zone. Once the model was validated by observations of major ions in spring water and downhole temperature logs in the discharge area, it was used to determine the coupled processes of fluid, heat, and chemical transport in the reservoir and the resultant sealing ranges. It was found that the dissolution of albite and K-feldspar leads to the precipitation of smectite-Ca and illite in the middle and bottom of the fault under the condition of high concentration of Ca2+ and Mg2+ in the recharge water. Calcite veins were formed in discharge zone, because the horizontal fast flow in shallow subsurface zone supplied abundant Ca2+ and HCO3-. As a consequence, the permeability in the discharge zone reduced by 15% when compared to the original permeability of 100 mD. Moreover, another three self-sealing areas were formed near the recharge zone, the deep upgradient zone, and the downgradient area where the fast upward fluid flow occurred. Self-sealing subsequently prevented the deep circulation of the flow and heat absorption, which tends to make the fault-controlled geothermal system inactive.

2015 ◽  
Vol 8 (3) ◽  
pp. 2369-2402
Author(s):  
W. He ◽  
C. Beyer ◽  
J. H. Fleckenstein ◽  
E. Jang ◽  
O. Kolditz ◽  
...  

Abstract. This technical paper presents an efficient and performance-oriented method to model reactive mass transport processes in environmental and geotechnical subsurface systems. The open source scientific software packages OpenGeoSys and IPhreeqc have been coupled, to combine their individual strengths and features to simulate thermo-hydro-mechanical-chemical coupled processes in porous and fractured media with simultaneous consideration of aqueous geochemical reactions. Furthermore, a flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand, and the underlying processes such as for groundwater flow or solute transport on the other hand. The coupling interface and parallelization scheme have been tested and verified in terms of precision and performance.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1957 ◽  
Author(s):  
Yuan ◽  
Wei ◽  
Zhang ◽  
Qin

Water–rock interactions can alter rock properties through chemical reactions during subsurface transport processes like geological CO2 sequestration (GCS), matrix acidizing, and waterflooding in carbonate formations. Dynamic changes in rock properties cause a failure of waterflooding and GCS and could also dramatically affect the efficiency of the acidizing. Efficient numerical simulations are thus essential to the optimized design of those subsurface processes. In this paper, we develop a three-dimensional (3D) numerical model for simulating the coupled processes of fluid flow and chemical reactions in fractured carbonate formations. In the proposed model, we employ the Stokes–Brinkman equation for momentum balance, which is a single-domain formulation for modeling fluid flow in fractured porous media. We then couple the Stokes–Brinkman equation with reactive-transport equations. The model can be formulated to describe linear as well as radial flow. We employ a decoupling procedure that sequentially solves the Stokes–Brinkman equation and the reactive transport equations. Numerical experiments show that the proposed method can model the coupled processes of fluid flow, solute transport, chemical reactions, and alterations of rock properties in both linear and radial flow scenarios. The rock heterogeneity and the mineral volume fractions are two important factors that significantly affect the structure of conductive channels.


2021 ◽  
Author(s):  
Diederik Jacques ◽  
Jirka Simunek ◽  
Bertrand Leterme ◽  
Hans Meeussen ◽  
Eric Laloy

<p>Coupled reactive transport codes are indispensable tools for simulating the fate of solutes in porous media for both environmental and engineering applications. HP1 and HP2/3 are some of the most versatile tools for coupled processes of variably-saturated water flow, multicomponent solute transport, heat transfer, and equilibrium-kinetic chemical reaction networks (Jacques et al., 2018). To date, multiple extensions are included that significantly increase the flexibility of the HPx codes. In addition to the default PHREEQC geochemical solver, HPx provides alternatives for the geochemical step: the geochemical solver ORCHESTRA (Meeussen, 2003) or direct scripting. The ORCHESTRA solver is relatively small and efficient and comes with a large set of user definable adsorption models, including the NICA-Donnan model. The choice of the scripting language has been extended from the classical BASIC scripting language to the structured, prototype-based programming variant of BASIC and Python. The latter gives the possibility to include several libraries of Python immediately in the HPx based models. For example, machine learning techniques can replace computationally expensive geochemical calculations to speed up the calculations. The HPx code is also coupled to the MT3D-USGS code, the groundwater solute transport simulator for MODFLOW. Via the MODFLOW-HYDRUS1D integration, soil flow and transport processes can be integrated as an unsaturated zone component into MODFLOW and MT3D-USGS. The last change is the updated graphical user interface (GUI) for the geochemical model input and post-processing output, incorporated in the standard HYDRUS GUI. Besides, a stand-alone GUI version is available as an advanced interface for geochemical calculations with PHREEQC.</p> <p> </p> <p>Jacques, D., J. Simunek, D. Mallants and M. T. van Genuchten (2018).  JOURNAL OF HYDROLOGY AND HYDROMECHANICS <strong>66</strong>(2): 211-226.</p> <p>Meeussen, J. C. L. (2003). Environmental Science & Technology <strong>37</strong>(6): 1175-1182.</p>


2021 ◽  
Author(s):  
Xavier Sanchez-Vila

<p>The more we study flow and transport processes in porous media, the larger the number of questions that arise. Heterogeneity, uncertainty, multidisciplinarity, and interdisciplinarity are key words that make our live as researchers miserable… and interesting. There are many ways of facing complexity; this is equivalent as deciding what colors and textures to consider when being placed in front of a fresh canvas, or what are the sounds to include and combine in a music production. You can try to get as much as you can from one discipline, using very sophisticated state-of-the-art models. On the other hand, you can choose to bring to any given problem a number of disciplines, maybe having to sacrifice deepness in exchange of the better good of yet still sophisticated multifaceted solutions. There are quite a number of examples of the latter approach. In this talk, I will present a few of those, eventually concentrating in managed aquifer recharge (MAR) practices. This technology involves water resources from a myriad of perspectives, covering from climate change to legislation, from social awareness to reactive transport, from toxicological issues to biofilm formation, from circular economy to emerging compounds, from research to pure technological developments, and more. All of these elements deserve our attention as researchers, and we cannot pretend to master all of them. Integration, development of large research groups, open science are words that will appear in this talk. So does mathematics, and physics, and geochemistry, and organic chemistry, and biology. In any given hydrogeological problem you might need to combine equations, statistics, experiments, field work, and modeling; expect all of them in this talk. As groundwater complexity keeps amazing and mesmerizing me, do not expect solutions being provided, just anticipate more and more challenging research questions being asked.</p>


2021 ◽  
Author(s):  
Ricardo Pérez Indoval ◽  
Javier Rodrigo-Ilarri ◽  
Eduardo Cassiraga

<p>Chlorpyrifos is commoly used as an pesticide to control weeds and prevent nondesirable grow of algae, fungi and bacteria in many agricultural applications. Despite its highly negative effects on human health, environmental modeling of this kind of pesticide in the groundwater is not commonly done in real situations. Predicting the fate of pesticides released into the natural environment is necessary to anticipate and minimize adverse effects both at close and long distances from the contamination source. A number of models have been developed to predict the behavior, mobility, and persistence of pesticides. These models should account for key hydrological and agricultural processes, such as crop growth, pesticide application patterns, transformation processes and field management practices.</p><p>This work shows results obtained by the Pesticide Water Calculator (PWC) model to simulate the behavior of chlorpyrifos. PWC model is used as a standard pesticide simulation model in USA and in this work it has been used to  simulate the fate and transport of chlorpyrifos in the unsaturated zone of the aquifer. The model uses a whole set of parameters to solve a modified version of the mass transport equation considering the combined effect of advection, dispersion and reactive transport processes. PWC is used to estimate the daily concentrations of chlorpyrifos in the Buñol-Cheste aquifer in Valencia Region(Spain).</p><p>A whole set of simulation scenarios have been designed to perform a parameter sensitivity analysis. Results of the PWC model obtained in this study represents a crucial first step towards the development of a pesticide risk assessment in Valencia Region. Results show that numerical simulation is a valid tool for the analysis and prediction of the fate  and transport of pesticides in the groundwater.</p>


2019 ◽  
Vol 52 (6) ◽  
Author(s):  
O. Burkan Isgor ◽  
W. Jason Weiss

The article, A nearly self-sufficient framework for modelling reactive-transport processes in concrete, written by O. Burkan Isgor and W. Jason Weiss, was originally published electronically on the publisher’s Internet portal (currently SpringerLink) on 28 December 2018 without open access.


2019 ◽  
Vol 85 (1) ◽  
pp. 49-74 ◽  
Author(s):  
Hang Deng ◽  
Nicolas Spycher

Sign in / Sign up

Export Citation Format

Share Document