scholarly journals Characteristics of Intestinal Microecology during Mesenchymal Stem Cell-Based Therapy for Mouse Acute Liver Injury

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaotian Dong ◽  
Xudong Feng ◽  
Jingqi Liu ◽  
Yanping Xu ◽  
Qiaoling Pan ◽  
...  

Background. The mechanisms of mesenchymal stem cell (MSC) transplantation to protect against acute liver injury have been well studied within the liver. However, the associated changes in the intestinal microbiota during this process are poorly understood.Methods. In this study, compact bone-derived MSCs were injected into mice after carbon tetrachloride (CCl4) administration. Potential curative effect of MSC was evaluated by survival rate and biochemical and pathological results. Overall structural changes of microbial communities and alterations in the intestinal microbiota were assessed by sequenced 16S rRNA amplicon libraries from the contents of the cecum and colon.Results. MSCs significantly reduced the serum levels of aspartate transaminase and alanine transaminase and improved the histopathology and survival rate. Lower expression and discontinuous staining of zonula occludens, as well as disrupted tight junctions, were observed in CCl4-treated mice at 48 h compared with MSC-transplanted mice. Moreover, MSC transplantation to the liver leads to intestinal microbiota changes that were reflected in the decreased abundance of BacteroidetesS24-7andBacteroidaceaeand increased abundance of FirmicutesClostridiales,Ruminococcaceae, andLactobacillusat the initial time point compared with that in CCl4-treated mice. In addition, phylogenetic investigation of communities by the reconstruction of unobserved states (PICRUSt) based on the Greengenes database revealed functional biomarkers of MSC-transplanted mice involved in cell motility, signal transduction, membrane transport, transcription, and metabolism of lipids, cofactors, vitamins, terpenoids, and polyketides, as well as xenobiotics.Conclusion. The initial alterations in the Firmicutes/Bacteroidetes ratio, which resulted from MSC infusion to the liver, maintain intestinal mucosal biology and homeostasis that may be beneficial to liver repair.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenxia Hu ◽  
Lingfei Zhao ◽  
Lingjian Zhang ◽  
Qiongling Bao ◽  
Lanjuan Li

2015 ◽  
Vol 23 (4) ◽  
pp. 465-482 ◽  
Author(s):  
Meirong Li ◽  
Yali Zhao ◽  
Haojie Hao ◽  
Weidong Han ◽  
Xiaobing Fu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan Li ◽  
Qi-lin Jiang ◽  
Leanne Van der Merwe ◽  
Dong-hao Lou ◽  
Cai Lin

Abstract Background A skin flap is one of the most critical surgical techniques for the restoration of cutaneous defects. However, the distal necrosis of the skin flap severely restricts the clinical application of flap surgery. As there is no consensus on the treatment methods to prevent distal necrosis of skin flaps, more effective and feasible interventions to prevent skin flaps from necrosis are urgently needed. Stem therapy as a potential method to improve the survival rate of skin flaps is receiving increasing attention. Methods This review followed the recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statements. Twenty studies with 500 animals were included by searching Web of Science, EMBASE, PubMed, and Cochrane Library databases, up until October 8, 2020. Moreover, the references of the included articles were searched manually to obtain other studies. All analyses were conducted using Review Manager V.5.3 software. Results Meta-analysis of all 20 studies demonstrated stem cell treatment has significant effects on reducing necrosis of skin flap compared with the control group (SMD: 3.20, 95% CI 2.47 to 3.93). Besides, subgroup analysis showed differences in the efficacy of stem cells in improving the survival rate of skin flaps in areas of skin flap, cell type, transplant types, and method of administration of stem cells. The meta-analysis also showed that stem cell treatment had a significant effect on increasing blood vessel density (SMD: 2.96, 95% CI 2.21 to 3.72) and increasing the expression of vascular endothelial growth factor (VEGF, SMD: 4.34, 95% CI 2.48 to 6.1). Conclusions The preclinical evidence of our systematic review indicate that stem cell-based therapy is effective for promoting early angiogenesis by up regulating VEGF and ultimately improving the survival rate of skin flap. In summary, small area skin flap, the administration method of intra-arterial injection, ASCs and MSCs, and xenogenic stem cells from humans showed more effective for the survival of animal skin flaps. In general, stem cell-based therapy may be a promising method to prevent skin flap necrosis.


Nanoscale ◽  
2020 ◽  
Author(s):  
Naishun Liao ◽  
Da Zhang ◽  
Ming Wu ◽  
Huang-Hao Yang ◽  
Xiaolong Liu ◽  
...  

Adipose tissue derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to low hepatic engraftment efficiency of...


Author(s):  
Li Wang ◽  
Yiwen Zhang ◽  
Jiajun Zhong ◽  
Yuan Zhang ◽  
Shuisheng Zhou ◽  
...  

Objective: The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. Methods: Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE’s risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. Results: Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) − 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD − 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD − 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). Conclusion: Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.


2012 ◽  
Vol 10 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Vaibhav Mundra ◽  
Ivan C. Gerling ◽  
Ram I. Mahato

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ping Hua ◽  
Jian-Yang Liu ◽  
Jun Tao ◽  
Song-Ran Yang

Treatment of ischemic cardiomyopathy caused by myocardial infarction (MI) using mesenchymal stem cell (MSC) transplantation is a widely researched field, with promising clinical application. However, the low survival rate of transplanted cells has a severe impact on treatment outcome. Currently, research is focused on investigating the strategy of combining genetic engineering, tissue engineering materials, and drug/hypoxia preconditioning to improve ischemic cardiomyopathy treatment outcome using MSC transplantation treatment (MSCTT). This review discusses the application and progress of these techniques.


Sign in / Sign up

Export Citation Format

Share Document