scholarly journals Systematically Characterizing Chemical Profile and Potential Mechanisms of Qingre Lidan Decoction Acting on Cholelithiasis by Integrating UHPLC-QTOF-MS and Network Target Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Peng Huang ◽  
Hongwen Ke ◽  
Yang Qiu ◽  
Mingchen Cai ◽  
Jialin Qu ◽  
...  

Qingre Lidan Decoction (QRLDD), a classic precompounded prescription, is widely used as an effective treatment for cholelithiasis clinically. However, its chemical profile and mechanism have not been characterized and elucidated. In the present study, a rapid, sensitive, and reliable ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for comprehensively identifying the major constituents in QRLDD. Furthermore, a network pharmacology strategy based on the chemical profile was applied to clarify the synergetic mechanism. A total of 72 compounds containing flavonoids, terpenes, phenolic acid, anthraquinones, phenethylalchohol glycosides, and other miscellaneous compounds were identified, respectively. 410 disease genes, 432 compound targets, and 71 related pathways based on cholelithiasis-related and compound-related targets databases as well as related pathways predicted by the Kyoto Encyclopedia of Genes and Genomes database were achieved. Among these pathways and genes, pathway in cancer and MAPK signaling pathway may play an important role in the development of cholelithiasis. EGFR may be a crucial target in the conversion of gallstones to gallbladder carcinoma. Regulation of PRKCB/RAF1/MAP2K1/MAPK1 is associated with cell proliferation and differentiation. Thus, the fingerprint coupled with network pharmacology analysis could contribute to simplifying the complex system and providing directions for further research of QRLDD.

2004 ◽  
Vol 16 (2) ◽  
pp. 145
Author(s):  
H.R. Kim ◽  
J.K. Kang ◽  
J.T. Yoon ◽  
H.H. Seong ◽  
C.S. Park ◽  
...  

Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by extremely low success rate. Most clones die before birth and survivors frequently display abnormalities. It is speculated that epigenetic reprogramming is somehow defective in reconstituted embryos (Reik W et al., 2003 Theriogenology 59 21–32; Han YM et al., 2003 Theriogenology 59, 33–44). It is likely that placental anomalies are directly or indirectly responsible for the death of cloned fetus and neonates. To address this question, we analyzed protein patterns of two placentae obtained after postnatal death of fetuses from SCNT of Korean Native Cattle and two normal placentae obtained after birth of AI fetuses. Global proteomics approach was employed by using 2-D gel electrophoresis and mass spectrometry to separate the different placenta proteins. Proteins within an isoelectric point range of 4.0 to 7.0 and a molecular weight range of 20–100kDa were analyzed by means of 2-D gel electrophoresis with three replications of each sample. The stained gels were scanned and calibrated at an optical resolution of 63.5μm/pixel using a GS-710 (Bio-Rad Laboratories, Hercules, CA, USA). Approximately 480 spots were detected in placental 2-D gel stained with coomassie-blue. Then, image analysis by Malanie III (Swiss Institute for Bioinformatics, Geneva, Switzerland) was performed to detect variations in protein spots between normal and SCNT placentae. In the comparison of normal and SCNT samples, at least 15 protein spots were identified as regulated differentially. Using MALDI-TOF-MS (PerSeptive Biosystems, Framinham, MA, USA), 10 spots were identified as up-regulated proteins in SCNT placentae including BPLP-I, Rho GDI 2, osteoclast stimulating factors, SM22, 60S Acidic Ribosomal and Protein P2, whereas five spots were down-regulated proteins such as Peroxiredoxin 2. Mass spectrometry with sequencing was used to further analyze the uncharacterized proteins. Most identified proteins in this analysis appeared to be related to cell proliferation and differentiation, fetal growth and development or metabolism. Further, specific functions of proteins in placenta have been investigated at the molecular levels during pregnancy.


The Analyst ◽  
2019 ◽  
Vol 144 (16) ◽  
pp. 4835-4840 ◽  
Author(s):  
Xiu-Ping Chen ◽  
Fang Zhang ◽  
Yin-Long Guo

The utility of adding ion mobility (IM) to quadrupole time of flight mass spectrometry (IM-QTOF MS) for highly effective analysis of multiple pesticides in complex matrices was evaluated.


Sign in / Sign up

Export Citation Format

Share Document