scholarly journals Consensus for Mixed-Order Multiagent Systems over Jointly Connected Topologies via Impulse Control

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Fenglan Sun ◽  
Xiaogang Liao ◽  
Yongfu Li ◽  
Feng Liu

Because of the complexity of the environment, the dynamics of agents in the same system may be different. That is, the dynamics of some agents may be first ordered, and the others may be second ordered, even high ordered. In addition, the network topologies of systems are always varying over time. Because of these facts, this paper studies the consensus problem of the mixed-order multiagent networks over the jointly connected topologies. By adopting the impulse control technique, some control protocols are proposed based on the information of the agents themselves and their neighbors. Several simulation results are given to verify the correctness of the theoretical results.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhao-Jun Tang ◽  
Ting-Zhu Huang ◽  
Jin-Liang Shao

We consider consensus problems of first-order multiagent systems with sampled information and noisy measurements. A distributed stochastic approximation type algorithm is employed to attenuate the measurement noises. We provide conditions under which almost sure strong consensus is guaranteed for fixed and switching directed network topologies. Simulation results are provided to illustrate the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Liu ◽  
Kaiyu Qin ◽  
Wei Chen ◽  
Ping Li ◽  
Mengji Shi

Due to the complex external environment, many multiagent systems cannot be precisely described or even cannot be described by an integer-order dynamical model and can only be described by a fractional-order dynamical model. In this paper, consensus problems are investigated for two types of fractional-order multiagent systems (FOMASs) with nonuniform time delays: FOMAS with symmetric time delays and undirected topology and FOMAS with asymmetric time delays and directed topology. Employing the Laplace transform and the frequency-domain theory, two delay margins are obtained to guarantee the consensus for the two types of FOMAS, respectively. These results are also suitable for the integer-order dynamical model. Finally, simulation results are provided to illustrate the effectiveness of our theoretical results.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kaien Liu ◽  
Zhijian Ji ◽  
Shitao Han

In this paper, the bipartite consensus problem of heterogeneous multiagent systems composed of first-order and second-order agents is considered by utilizing the event-triggered control scheme. Under structurally balanced directed topology, event-triggered bipartite consensus protocol is put forward, and event-triggering functions consisting of measurement error and threshold are designed. To exclude Zeno behavior, an exponential function is introduced in the threshold. The bipartite consensus problem is transformed into the corresponding stability problem by means of gauge transformation and model transformation. By virtue of Lyapunov method, sufficient conditions for systems without input delay are obtained to guarantee bipartite consensus. Furthermore, for the case with input delay, sufficient conditions which include an admissible upper bound of the delay are obtained to guarantee bipartite consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Li Xiao

Intermittent interaction control is introduced to solve the consensus problem for second-order multiagent networks due to the limited sensing abilities and environmental changes periodically. And, we get some sufficient conditions for the agents to reach consensus with linear protocol from the theoretical findings by using the Lyapunov control approach. Finally, the validity of the theoretical results is validated through the numerical example.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Bo Liu ◽  
Li Wang ◽  
Dehui Sun ◽  
Xinmao Zhu

This paper investigates the consensus problem of multiagent systems with directed topologies. Different from the literatures, a new method, the Laplace transform, to study the consensus of multiagent systems with directed topology and communication time delay is proposed. The accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are given. It is proved that all the agents could aggregate and eventually form a cohesive cluster in finite time under certain conditions, and the consensus center is only determined by the initial states and the communication configuration among the agents. Finally, simulations are given to illustrate the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Liu ◽  
Shaolei Zhou ◽  
Shi Yan ◽  
Gaoyang Yin

This paper investigates the robust leaderless consensus problem of uncertain multiagent systems with directed fast switching topologies. The topologies are assumed to jointly contain a directed spanning tree. Based on a special property of the graph Laplacian matrix, the consensus problem is converted into a stabilization problem by performing a proper variable transformation. Averaging method is employed for analysis. It is proved that if the topologies switch sufficiently fast and the controllers are properly designed, the robust leaderless consensus can still be achieved even when all the possible topologies are unconnected in the switching time intervals. Finally, a numerical simulation is provided to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ali Mustafa ◽  
Muhammad Najam ul Islam ◽  
Salman Ahmed ◽  
Muhammad Ahsan Tufail

Nearly all applications in multiagent systems demand precision, robustness, consistency, and rapid convergence in designing of distributed consensus algorithms. Keeping this thing in our sight, this research suggests a robust consensus protocol for distributed multiagent networks, continuing asynchronous communications, where agent’s states values are updated at diverse interval of time. This paper presents an asynchronous communication for both reliable and unreliable network topologies. The primary goal is to delineate local control inputs to attain time synchronization by processing the update information received by the agents associated in a communication topology. Additionally in order to accomplish the robust convergence, modelling of convergence analysis is conceded by commissioning the basic principles of graph and matrix theory alongside the suitable lemmas. Moreover, statistical examples presenting four diverse scenarios are provided in the end; produced results are the recognisable indicator to authenticate the robust effectiveness of the proposed algorithm. Likewise, a simulation comparison of the projected algorithm with the other existing approaches is conducted, considering different performance parameters are being carried out to support our claim.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yanfen Cao ◽  
Yuangong Sun

We investigate consensus problem for third-order multiagent dynamical systems in directed graph. Necessary and sufficient conditions to consensus of third-order multiagent systems have been established under three different protocols. Compared with existing results, we focus on the relationship between the scaling strengths and the eigenvalues of the involved Laplacian matrix, which guarantees consensus of third-order multiagent systems. Finally, some simulation examples are given to illustrate the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Quan Xu ◽  
Shengxian Zhuang ◽  
Dan Hu ◽  
Yingfeng Zeng ◽  
Jian Xiao

This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networksAandBwith time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networksAandBcan asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.


Sign in / Sign up

Export Citation Format

Share Document