scholarly journals The Emerging Role of lncRNAs in Spinal Cord Injury

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Fei Wang ◽  
Junzhi Liu ◽  
Xiunan Wang ◽  
Jigang Chen ◽  
Qingjie Kong ◽  
...  

Spinal cord injury (SCI) is a highly debilitating disease and is increasingly being recognized as an important global health priority. However, the mechanisms underlying SCI have not yet been fully elucidated, and effective therapies for SCI are lacking. Long noncoding RNAs (lncRNAs), which form a major class of noncoding RNAs, have emerged as novel targets for regulating several physiological functions and mediating numerous neurological diseases. Notably, gene expression profile analyses have demonstrated aberrant changes in lncRNA expression in rats or mice after traumatic or nontraumatic SCI. LncRNAs have been shown to be associated with multiple pathophysiological processes following SCI including inflammation, neural apoptosis, and oxidative stress. They also play a crucial role in the complications associated with SCI, such as neuropathic pain. At the same time, some lncRNAs have been found to be therapeutic targets for neural stem cell transplantation and hydrogen sulfide treatment aimed at alleviating SCI. Therefore, lncRNAs could be promising biomarkers for the diagnosis, treatment, and prognosis of SCI. However, further researches are required to clarify the therapeutic effects of lncRNAs on SCI and the mechanisms underlying these effects. In this study, we reviewed the current progress of the studies on the involvement of lncRNAs in SCI, with the aim of drawing attention towards their roles in this debilitating condition.

2020 ◽  
Author(s):  
Chenyu Wu ◽  
Huanwen Chen ◽  
Rong Zhuang ◽  
Yongli Wang ◽  
Xinli Hu ◽  
...  

Abstract Background:Spinal cord injury (SCI) results in a wide range of disabilities. Its complex pathophysiological process limits the effectiveness of many clinical treatments. Betulinic acid (BA) has been shown to be an effective treatment for some neurological diseases, but it has not been studied in SCI. In this study, we assessed the role of BA in SCI and investigated its underlying mechanism. Methods:Using a mouse model of SCI, survival and functional outcomes following injury were assessed. Western blotting, ELISA, and immunofluorescence techniques were employed to analyze levels of autophagy, mitophagy, and pyroptosis; ROS- and AMPK-related signaling pathways were also examined. Results:Our results showed that BA significantly improves functional recovery following SCI. Furthermore, autophagy, mitophagy, ROS-activity and pyroptosis were implicated in the mechanism of BA in the treatment of SCI. Specifically, our results suggest that BA restored autophagy flux following injury, which induces mitophagy to eliminate the accumulation of ROS and subsequently inhibits pyroptosis. Further mechanistic studies revealed that BA likely regulates autophagy and mitophagy via the AMPK-mTOR-TFEB signaling pathway. Conclusion: BA can significantly promote the recovery following SCI and that it may be a promising therapy for SCI.


2020 ◽  
Vol 15 (6) ◽  
pp. 522-530
Author(s):  
Jiawei Shu ◽  
Feng Cheng ◽  
Zhe Gong ◽  
Liwei Ying ◽  
Chenggui Wang ◽  
...  

Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.


Author(s):  
Jiaqi Bi ◽  
Jianxiong Shen ◽  
Chong Chen ◽  
Zheng Li ◽  
Haining Tan ◽  
...  

2021 ◽  
pp. 1357034X2110256
Author(s):  
Denisa Butnaru

Motility impairments resulting from spinal cord injuries and cerebrovascular accidents are increasingly prevalent in society, leading to the growing development of rehabilitative robotic technologies, among them exoskeletons. This article outlines how bodies with neurological conditions such as spinal cord injury and stroke engage in processes of re-appropriation while using exoskeletons and some of the challenges they face. The main task of exoskeletons in rehabilitative environments is either to rehabilitate or ameliorate anatomic functions of impaired bodies. In these complex processes, they also play a crucial role in recasting specific corporeal phenomenologies. For the accomplishment of these forms of corporeal re-appropriation, the role of experts is crucial. This article explores how categories such as bodily resistance, techno-inter-corporeal co-production of bodies and machines, as well as body work mark the landscape of these contemporary forms of impaired corporeality. While defending corporeal extension rather than incorporation, I argue against the figure of the ‘cyborg’ and posit the idea of ‘residual subjectivity’.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Sipin Zhu ◽  
Yibo Ying ◽  
Jiahui Ye ◽  
Min Chen ◽  
Qiuji Wu ◽  
...  

AbstractNeural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso–Beattie–Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Qian Zhang ◽  
Hao Yang ◽  
Jing An ◽  
Rui Zhang ◽  
Bo Chen ◽  
...  

Objective. Spinal cord injury (SCI) is a devastating neurological disorder caused by trauma. Pathophysiological events occurring after SCI include acute, subacute, and chronic phases, while complex mechanisms are comprised. As an abundant source of natural drugs, Traditional Chinese Medicine (TCM) attracts much attention in SCI treatment recently. Hence, this review provides an overview of pathophysiology of SCI and TCM application in its therapy.Methods. Information was collected from articles published in peer-reviewed journals via electronic search (PubMed, SciFinder, Google Scholar, Web of Science, and CNKI), as well as from master’s dissertations, doctoral dissertations, and Chinese Pharmacopoeia.Results. Both active ingredients and herbs could exert prevention and treatment against SCI, which is linked to antioxidant, anti-inflammatory, neuroprotective, or antiapoptosis effects. The detailed information of six active natural ingredients (i.e., curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and puerarin) and five commonly used herbs (i.e., Danshen, Ginkgo, Ginseng, Notoginseng, and Astragali Radix) was elucidated and summarized.Conclusions. As an important supplementary treatment, TCM may provide benefits in repair of injured spinal cord. With a general consensus that future clinical approaches will be diversified and a combination of multiple strategies, TCM is likely to attract greater attention in SCI treatment.


Sign in / Sign up

Export Citation Format

Share Document