scholarly journals Therapeutic Effects of Traditional Chinese Medicine on Spinal Cord Injury: A Promising Supplementary Treatment in Future

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Qian Zhang ◽  
Hao Yang ◽  
Jing An ◽  
Rui Zhang ◽  
Bo Chen ◽  
...  

Objective. Spinal cord injury (SCI) is a devastating neurological disorder caused by trauma. Pathophysiological events occurring after SCI include acute, subacute, and chronic phases, while complex mechanisms are comprised. As an abundant source of natural drugs, Traditional Chinese Medicine (TCM) attracts much attention in SCI treatment recently. Hence, this review provides an overview of pathophysiology of SCI and TCM application in its therapy.Methods. Information was collected from articles published in peer-reviewed journals via electronic search (PubMed, SciFinder, Google Scholar, Web of Science, and CNKI), as well as from master’s dissertations, doctoral dissertations, and Chinese Pharmacopoeia.Results. Both active ingredients and herbs could exert prevention and treatment against SCI, which is linked to antioxidant, anti-inflammatory, neuroprotective, or antiapoptosis effects. The detailed information of six active natural ingredients (i.e., curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and puerarin) and five commonly used herbs (i.e., Danshen, Ginkgo, Ginseng, Notoginseng, and Astragali Radix) was elucidated and summarized.Conclusions. As an important supplementary treatment, TCM may provide benefits in repair of injured spinal cord. With a general consensus that future clinical approaches will be diversified and a combination of multiple strategies, TCM is likely to attract greater attention in SCI treatment.

2020 ◽  
Vol 127 ◽  
pp. 110136 ◽  
Author(s):  
Yubao Lu ◽  
Jingjing Yang ◽  
Xuexi Wang ◽  
Zhanjun Ma ◽  
Sheng Li ◽  
...  

2015 ◽  
Vol 7 (19) ◽  
pp. 8285-8296 ◽  
Author(s):  
Yu Lin ◽  
Wei Xu ◽  
Wen Xu ◽  
Mingqing Huang ◽  
Yuqin Zhang ◽  
...  

Gualou Guizhi granules (GLGZGs) are a classical formula of traditional Chinese medicine, which have been commonly used to treat dysfunction after stroke, epilepsy and spinal cord injury.


2020 ◽  
Vol 15 (6) ◽  
pp. 522-530
Author(s):  
Jiawei Shu ◽  
Feng Cheng ◽  
Zhe Gong ◽  
Liwei Ying ◽  
Chenggui Wang ◽  
...  

Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Sipin Zhu ◽  
Yibo Ying ◽  
Jiahui Ye ◽  
Min Chen ◽  
Qiuji Wu ◽  
...  

AbstractNeural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso–Beattie–Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ze Lin ◽  
Yun Sun ◽  
Hang Xue ◽  
Lang Chen ◽  
Chenchen Yan ◽  
...  

Abstract Background Unfractionated heparin (UFH) and low molecular weight heparin (LMWH) are commonly used for preventing venous thrombosis of the lower extremity in patients with traumatic spinal cord injury. Although, LMWH is the most commonly used drug, it has yet to be established whether it is more effective and safer than UFH. Further, a comparison of the effectiveness of LMWH in preventing thrombosis at different locations and different degrees of spinal cord injury has also not been clearly defined. Materials and methods Cohort studies comparing the use of LMWH and UFH in the prevention of lower limb venous thrombosis in patients with spinal cord injury were identified using PubMed. The risk of bias and clinical relevance of the included studies were assessed using forest plots. The Newcastle-Ottawa quality assessment scale was used to evaluate the quality of the included studies. The main results of the study were analyzed using Review Manager 5.3. Results A total of five studies were included in this meta-analysis. Four studies compared the effectiveness and safety of LMWH and UFH in preventing thrombosis in patients with spinal cord injury. No significant differences were found between the therapeutic effects of the two drugs, and the summary RR was 1.33 (95% CI 0.42–4.16; P = 0.63). There was also no significant difference in the risk of bleeding between the two medications, and the aggregate RR was 0.78 (95% CI 0.55–1.12; P = 0.18). When comparing the efficacy of LMWH in preventing thrombosis in different segments and different degrees of spinal cord injury, no significant differences were found. Conclusions The results of this analysis show that compared with UFH, LMWH has no obvious advantages in efficacy nor risk prevention, and there is no evident difference in the prevention of thrombosis for patients with injuries at different spinal cord segments.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zefeng Wang ◽  
Haitong Wan ◽  
Jinhui Li ◽  
Hong Zhang ◽  
Mei Tian

With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer’s disease, Parkinson’s disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM.


Sign in / Sign up

Export Citation Format

Share Document