scholarly journals Electrochemical Performance of Ti-Based Commercial Biomaterials

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
E. Porcayo-Palafox ◽  
S. I. Carrera-Chavez ◽  
S. R. Casolco ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo

In order to determine the electrochemical behavior against the corrosion of different commercial biomaterials, in this study the results of the evaluation of different titanium implants are reported. The commercial implants evaluated were purchased randomly with different suppliers. The different biomaterials were subjected to studies of potentiodynamic polarization curves, open circuit potential measurements, linear polarization resistance measurements, and electrochemical impedance spectroscopy measurements in a 0.9% NaCl solution. The results showed that the chemical composition of the biomaterials corresponds to commercially pure Ti or to the alloy Ti6Al4V. In addition, although all the biomaterials showed a high resistance to corrosion, notable differences were observed in their performance. These differences were associated with the thermomechanical processes during the manufacture of the biomaterial, which affected its microstructure.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
D. M. Martinez de la Escalera ◽  
J. J. Ramos-Hernandez ◽  
E. Porcayo-Palafox ◽  
J. Porcayo-Calderon ◽  
J. G. Gonzalez-Rodriguez ◽  
...  

In this study, the effect of the addition of Nd3+ ions as a corrosion inhibitor of the API X70 steel in a medium rich in chlorides was evaluated. The performance of the Nd3+ ions was evaluated by means of electrochemical techniques such as potentiodynamic polarization curves, open circuit potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy, as well as by means of scanning electron microscopy and EDS measurements. The results showed that Nd3+ ions reduce the corrosion rate of steel at concentrations as low as 0.001 M Nd3+. At higher concentrations, the inhibition efficiency was only slightly affected although the concentration of chloride ions was increased by the addition of the inhibitor. The adsorption of the Nd3+ ions promotes the formation of a protective layer of oxides/hydroxides on the metal surface, thereby reducing the exchange rate of electrons. Nd3+ ions act as a mixed inhibitor with a strong predominant cathodic effect.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
S. Godavarthi ◽  
J. Porcayo-Calderon ◽  
E. Vazquez-Velez ◽  
M. Casales-Diaz ◽  
D. M. Ortega-Toledo ◽  
...  

The corrosion behavior of permanent magnets with different chemical composition was evaluated. Permanent magnets were tested in 3.5% NaCl solution at room temperature using electrochemical technics such as polarization curves, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy measurements. Results have shown that corrosion rate is affected by Nd, Pr, and Co content. Analysis by scanning electron microscopy has shown that pitting attack is the main mode of degradation of the magnets, while Co addition reduces it and Pr addition increases it.


2014 ◽  
Vol 805 ◽  
pp. 167-171 ◽  
Author(s):  
F.S. Silva ◽  
P.H. Suegama ◽  
W.P. Silva ◽  
A.W. Rinaldi ◽  
N.L.C. Domingues ◽  
...  

Schiff bases m-toluene N-Salicylideneaniline (m-TOL), (B) m-nitro-N- Salicylideneaniline (m-NTR) and (C) m-methoxy-N-salicylideneaniline (m-MTX) and cerium ions were studied added to 3.5 wt.% NaCl solution and added to the hybrid film based tetraethoxysilane (TEOS) e 3-methacryloxypropyltrimethoxysilane (MPTS). The polarization measurements showed lower current densities for the steel in NaCl with m-MTX, indicating that the m-MTX may be acting as an inhibitor. The hybrid films were doped with the m-MTX, Ce (III) or Ce (IV). Electrochemical measurements of open circuit potential (EOC), polarization curves and electrochemical impedance spectroscopy (EIS), were used to evaluate the corrosion behavior of the hybrid films. According Electrochemical Impedance measurements, all hybrid films, provided protection to the carbon steel. The films doped with Ce (IV), provided greater protection than the other, which indicates that this is the most suitable dopant for use in films.


2013 ◽  
Vol 634-638 ◽  
pp. 2935-2938
Author(s):  
You Bin Wang ◽  
Jian Min Zeng

The corrosion property of three currently used hot dipped alloys (Al-8Si, Zn-0.6Ni and 55Al-Zn-Si) immersed in 3.5% NaCl solution were studied by analyzing the open circuit potential variation with time and electrochemical impedance spectroscopy (EIS) tests. The open circuit potential of the Al-8Si alloy is 100mV higher than the potential of Zn-0.6Ni and 55Al-Zn-Si, and the potential of Zn-0.6Ni is approach to the 55Al-Zn-Si alloy. The phase angles of the Al-8Si, 55Al-Zn-Si and Zn-0.6Ni are close to -80°,-70°,-60°, and the high impedance values at low frequencies are 105,104,103 Ω cm2, respectively. The EIS spectra of the alloys indicated two relaxation time constants. An “equivalent circuit” with the circuit elements representing the electrochemical properties was proposed to simulate the EIS spectra, and the simulated dates were in a good agreement with the experiment dates. The polarization resistance (Rp) of Al-8Si, 55Al-Zn-Si and Zn-0.6Ni are 18000, 2010, 251 Ω•cm-2, respectively. The results showed that the corrosion property of Al-8Si is well than the other alloys in the test solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Georgiana Bolat ◽  
Daniel Mareci ◽  
Sorin Iacoban ◽  
Nicanor Cimpoesu ◽  
Corneliu Munteanu

Linear anodic potentiodynamic polarization and dynamic electrochemical impedance spectroscopic (DEIS) measurements were carried out for NiTi and NiTiNb alloys in physiological 0.9 wt% NaCl solution in order to assess their corrosion resistance. DEIS measurements were performed from open circuit potential to dissolution potential. It was shown that the impedance measurements in potentiodynamic conditions allow simultaneous investigation of changes in passive layer structure. The impedance spectra of various potential regions were fitted and also discussed. The surface morphology of the alloys after linear anodic polarization test was studied using scanning electron microscopy (SEM) technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hwa-Sung Ryu ◽  
Jitendra Kumar Singh ◽  
Han-Seung Lee ◽  
Won-Jun Park

The effect of calcium nitrite (Ca(NO2)2) was assessed by electrochemical means such as open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic studies in saturated Ca(OH)2solution contaminated with 0.99 and 7.91 g/L NaCl. The preliminary results of OCP showed that the potential is shifted towards positive (noble) side as content of inhibitor increased. The EIS results indicate that Ca(NO2)2works effectively in reduction and initiation of corrosion of steel rebar in NaCl contaminated Ca(OH)2solution. Potentiodynamic studies revealed the pitting tendency of steel rebar exposed in 0.99 g/L NaCl at [Cl−/NO2-] = 1.2 attributed to low conductivity of passive film which causes interference for Cl−ions attack during anodic polarization. The 85.75% efficiency is found in 0.99 g/L at [Cl−/NO2-] = 1.2. The Ca(NO2)2inhibitor transformed the unstable iron oxides/hydroxides into stable and protective oxides/hydroxides due to its strong oxidizing nature. Therefore, this inhibitor is sufficiently and significantly reducing the corrosion of steel rebar at even its low concentration with 0.99 and 7.91 g/L NaCl solution.


10.30544/386 ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. 181-188
Author(s):  
Marija Korać ◽  
Stevan Dimitrijević ◽  
Kemal Delijić ◽  
Željko Kamberović

This paper presents investigations of aluminum addition influence on the corrosion characteristics of the sterling silver Ag-Cu-Zn-Si alloys. The procedure for obtaining Ag-Cu-Zn-Al-Si alloys in small ranges of predefined composition was also presented. Open circuit potential measurements, linear polarization resistance method and potentiodynamic polarization tests were employed to determine corrosion characteristics of the alloys. The materials were tested in a 0.01M sodium sulfide solution. It was shown that the addition of aluminum improves sulfidization resistance and corrosion characteristics. Best results are achieved for the alloy with the following composition 92.5% Ag, 1.9% Cu, 3.7% Zn, 1.6% Al and 0.3% Si.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 28055-28062 ◽  
Author(s):  
Hamed Moghanni-Bavil-Olyaei ◽  
Jalal Arjomandi

The electrochemical performance of Al–0.9Mg–1Zn–0.1Mn–0.05Bi–0.02In (wt%) from commercially pure aluminum has been determined using open circuit potential–time measurement, galvanostatic discharge, potentiodynamic polarization and electrochemical impedance spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document