scholarly journals Hybrid Numerical Investigation on Soil-Hammer Interaction during Dynamic Compaction

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jian Wang ◽  
Yinghui Cui ◽  
Qimin Li

To investigate the mechanism of hammer-soil interaction under the action of dynamic compaction (DC) on a coarse-grained soil foundation, based on the theory of projectile penetration, the continuous-discrete coupling method is used to simulate the hammer-soil interaction process with different hammer shapes and different particle radii. The physical phenomena and mechanical parameters presented by the hammers and soil particles are quantitatively analyzed. The results show that the penetrating ability of the hammer is proportional to its lateral extrusion shearing ability and inversely proportional to its vertical extrusion capacity. The convex-bottomed hammer has the maximum penetration and lateral extrusion capability, the flat-bottomed hammer has the smallest penetration ability and the lateral extrusion capacity, and the concave-bottomed hammer has a penetration and lateral extrusion ability between those of the convex- and flat-bottomed hammers. The impact strength and vertical disturbance of the flat-bottomed hammer are the strongest, followed by the concave-bottomed hammer and the convex-bottomed hammer. In addition, it is found that the smaller the particle size of the coarse-grained soil is, the greater the depth of the crater formed and the smaller the contact force and the influence range of vertical disturbance. These research results reveal the interaction mechanisms of different hammer types and coarse-grained soil, which is expected to provide reference and guidance for the design and construction of coarse-grained soil foundations enhanced by DC.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xi Li ◽  
Jing Li ◽  
Xinyan Ma ◽  
Jidong Teng ◽  
Sheng Zhang

Dynamic compaction (DC) is commonly used to strengthen the coarse grained soil foundation, where particle breakage of coarse soils is unavoidable under high-energy impacts. In this paper, a novel method of modeling DC progress was developed, which can realize particle breakage by impact stress. A particle failure criterion of critical stress is first employed. The “population balance” between particles before and after crushing is guaranteed by the overlapping method. The performance of the DC model is successfully validated against literature data. A series of DC tests were then carried out. The effect of particle breakage on key parameters of DC including crater depth and impact stress was discussed. Besides, it is observed that the relationship between breakage amount and tamping times can be expressed by a logarithmic curve. The present method will contribute to a better understanding of DC and benefit further research on the macro-micro mechanism of DC.


2017 ◽  
Vol 10 (2) ◽  
pp. 238
Author(s):  
Mohammadehsan Zarringol ◽  
Mohammadreza Zarringol

During the past decades, reinforced soil has normally been constructed by coarse grained soil. Recently, low quality and locally accessible materials have been successfully used in reinforced soil due to economic observations. Loading speed is one of the effective factors in soil-geosynthetic interaction. In order to determine the impact of this factor, we carried out a pullout test on the samples with dimensions of 30×30×17 cm under four strain rates of 0.75, 1.25, 1.75 and 2.25 mm/min and three vertical stress rates of 20, 50 and 80 KN/m2. The results of this study indicated that the mobilization of geosynthetic strength in contact area depends on the amount of vertical stress. The increased vertical stress results in the increased shear strength in clay-geogrid contact area. Furthermore, the increased strain rate results in the reduced shear strength.


Author(s):  
E. I. Starovoitov ◽  
M. A. Zhuravkov ◽  
P. F. Pronina

The relevance of this paper is explained by a demand for the development of mechanical and mathematical models and methods for calculating the stress-strain state of the sandwich structural elements. The statement of the boundary value problem on the deformation of a circular sandwich plate with a central hole, connected to the soil foundation, was given. To describe the kinematics of an asymmetric plate pack, the broken line hypotheses are accepted. In a relatively thick lightweight core, the normal does not change its length, remains rectilinear, but rotates through some additional angle. Tuff, coarse grained soil, granite, and gneiss are accepted as the soil foundation. The bearing reaction is described by the Winkler model. The system of equilibrium equations is obtained by the variational method. Its solution is written in displacements through Kelvin functions. A numerical parametric analysis of displacements and stresses in the plate is carried out, their dependence on the type of soil foundation is shown.


Author(s):  
Nicholas Goodman ◽  
Brian J Leege ◽  
Peter E Johnson

Exposing students to hands-on experiments has been a common approach to illustrating complex physical phenomena that have been otherwise modelled solely mathematically. Compressible, isentropic flow in a duct is an example of such a phenomenon, and it is often demonstrated via a de Laval nozzle experiment. We have improved an existing converging/diverging nozzle experiment so that students can modify the location of the normal shock that develops in the diverging portion to better understand the relationship between the shock and the pressure. We have also improved the data acquisition system for this experiment and explained how visualisation of the standing shock is now possible. The results of the updated system demonstrate that the accuracy of the isentropic flow characteristics has not been lost. Through pre- and post-laboratory quizzes, we show the impact on student learning as well.


2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


2011 ◽  
Vol 250-253 ◽  
pp. 1460-1463
Author(s):  
Jian Qi Wu ◽  
Jian Hong Deng ◽  
Xiao Ping Wang

Obtained stress distribution of hammer bottom according to the analysis of horizontal and vertical red sandstone fill dry density of the hammer bottom after dynamic compaction; affirmed the stress distribution situation of the hammer bottom through comparative analysis of the test results by laboratory and field monitoring.


Sign in / Sign up

Export Citation Format

Share Document