scholarly journals Proteomic Assessment of iTRAQ-Based NaoMaiTong in the Treatment of Ischemic Stroke in Rats

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kening Li ◽  
Minghua Xian ◽  
Chi Chen ◽  
Shengwang Liang ◽  
Lei Chen ◽  
...  

Background. NaoMaiTong (NMT) is widely used in the treatment of cerebral ischemia but the molecular details of its beneficial effects remain poorly characterized. Materials and Methods. In this study, we used iTRAQ using 2D LC-MS/MS technology to investigate the cellular mechanisms governing the protective effects of NMT. The transient middle cerebral artery occlusion (MCAO) rat model was established and evaluated. The degree of cerebral ischemia was assessed through scoring for nerve injury symptoms and through the assessment of the areas of cerebral infarction. Brain tissues were subjected to analysis by iTRAQ. High-pH HPLC and RSLC-MS/MS analysis were performed to detect differentially expressed proteins (DEPs) between the treatment groups (Sham, MCAO, and NMT). Bioinformatics were employed for data analysis and DEPs were validated by western blot. Results. The results showed that NMT offers protection to the neurological damage caused by MCAO and was found to reduce the areas of cerebral infarction. We detected 3216 DEPs via mass spectrometry. Of these proteins, 21 displayed altered expression following NMT intervention. These included DEPs involved in translation, cell cycle regulation, cellular nitrogen metabolism, and stress responses. Pathway analysis revealed seven key DEPs that were enriched in ribosomal synthesis pathways, tight junction formation, and regulation of the actin cytoskeleton. According to protein-protein interaction analysis, RPL17, Tuba, and Rac1 were affected by NMT treatment, which was validated by western blot analysis. Discussion. We therefore identify new pharmacodynamic mechanisms of NMT for the prevention and treatment of ischemic stroke. These DEPs reveal new targets to prevent ischemic stroke induced neuronal damage.

1992 ◽  
Vol 12 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Fumito Kadoya ◽  
Akira Mitani ◽  
Tatsuru Arai ◽  
Kiyoshi Kataoka

The xanthine derivative propentofylline (HWA 285) has been reported to show protective effects against neuronal damage induced by cerebral ischemia. In the present study, microfluorometry was used to investigate the effect of propentofylline on the hypoxia–hypoglycemia-induced intracellular calcium accumulation in gerbil hippocampal slices. When slices were superfused with hypoxic–hypoglycemic medium that did not contain propentofylline, an acute increase in calcium accumulation was detected 75–200 s (mean latency of 123 s) after the beginning of hypoxia–hypoglycemia. When slices were superfused with hypoxic–hypoglycemic mediums that contained 10 μ M, 100 μ M, and 1 m M propentofylline, the latency of the acute increase in calcium accumulation was prolonged in all subregions of the hippocampus in a dose-dependent manner: mean latencies in field CA1 were 146, 168, and 197 s after hypoxia–hypoglycemia, respectively. This retardation in calcium accumulation may be involved in the mechanisms by which propentofylline diminishes ischemic injury.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zun-Jing Liu ◽  
Wei Liu ◽  
Lei Liu ◽  
Cheng Xiao ◽  
Yu Wang ◽  
...  

Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPARγagonist in that it upregulated PPARγexpression and PPARγ-PPRE binding activity. Administration of curcumin markedly decreased the infarct volume, improved neurological deficits, and reduced neuronal damage of rats. In addition, curcumin suppressed neuroinflammatory response by decreasing inflammatory mediators, such as IL-1β, TNF-α, PGE2, NO, COX-2, and iNOS induced by cerebral ischemia of rats. Furthermore, curcumin suppressed IκB degradation that was caused by cerebral ischemia. The present data also showed that PPARγinteracted with NF-κB-p65 and thus inhibited NF-κB activation. All the above protective effects of curcumin on cerebral ischemic injury were markedly attenuated by GW9662, an inhibitor of PPARγ. Our results as described above suggested that PPARγinduced by curcumin may play a critical role in protecting against brain injury through suppression of inflammatory response. It also highlights the potential of curcumin as a therapeutic agent against cerebral ischemia.


2016 ◽  
Vol 36 (4) ◽  
pp. 709-720 ◽  
Author(s):  
Risa Tamura ◽  
Hiroyuki Ohta ◽  
Yasushi Satoh ◽  
Shigeaki Nonoyama ◽  
Yasuhiro Nishida ◽  
...  

Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jialin He ◽  
Jianyang Liu ◽  
Yan Huang ◽  
Xiangqi Tang ◽  
Han Xiao ◽  
...  

The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo. Our results showed that the level of GOLPH3 protein, reactive oxygen species (ROS), and Ca2+ was upregulated, SPCA1 level was downregulated, and GA fragmentation was increased in ischemic stroke models, and OM-MSC treatment clearly ameliorated these GA stress responses in vitro and in vivo. Subsequently, the knockdown of PEDF in OM-MSCs using PEDF-specific siRNA further demonstrated that secretion of PEDF in OM-MSCs protected OGD/R-treated N2a cells and MCAO rats from GA stress response. Additionally, rescue experiment using specific pathway inhibitors suggested that OM-MSCs could promote the phosphorylation of the PI3K/Akt/mTOR pathway, thereby mitigating OGD/R-induced GA stress response and excessive autophagy. In conclusion, OM-MSCs minimized the GA stress response following cerebral IRI, at least partially, through the PEDF-PI3K/Akt/mTOR pathway.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 270 ◽  
Author(s):  
Weijie Xie ◽  
Ping Zhou ◽  
Yifan Sun ◽  
Xiangbao Meng ◽  
Ziru Dai ◽  
...  

Cerebral ischemia-reperfusion is a complicated pathological process. The injury and cascade reactions caused by cerebral ischemia and reperfusion are characterized by high mortality, high recurrence, and high disability. However, only a limited number of antithrombotic drugs, such as recombinant tissue plasminogen activator (r-TPA), aspirin, and heparin, are currently available for ischemic stroke, and its safety concerns is inevitable which associated with reperfusion injury and hemorrhage. Therefore, it is necessary to further explore and examine some potential neuroprotective agents with treatment for cerebral ischemia and reperfusion injury to reduce safety concerns caused by antithrombotic drugs in ischemic stroke. Ginseng Rg1 (G-Rg1) is a saponin composed of natural active ingredients and derived from the roots or stems of Panax notoginseng and ginseng in traditional Chinese medicine. Its pharmacological effects exert remarkable neurotrophic and neuroprotective effects in the central nervous system. To explore and summarize the protective effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury, we conducted this review, in which we searched the PubMed database to obtain and organize studies concerning the pharmacological effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury. This study provides a valuable reference and clues for the development of new agents to combat ischemic stroke. Our summarized review and analysis show that the pharmacological effects of and mechanisms underlying ginsenoside Rg1 activity against cerebral ischemia and reperfusion injury mainly involve 4 sets of mechanisms: anti-oxidant activity and associated apoptosis via the Akt, Nrf2/HO-1, PPARγ/HO-1, extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) pathways (or mitochondrial apoptosis pathway) and the caspase-3/ROCK1/MLC pathway; anti-inflammatory and immune stimulatory-related activities that involve apoptosis or necrosis via MAPK pathways (the JNK1/2 + ERK1/2 and PPARγ/HO-1 pathways), endoplasmic reticulum stress (ERS), high mobility group protein1 (HMGB1)-induced TLR2/4/9 and receptor for advanced glycation end products (RAGE) pathways, and the activation of NF-κB; neurological cell cycle, proliferation, differentiation, and regeneration via the MAPK pathways (JNK1/2 + ERK1/2, PI3K-Akt/mTOR, PKB/Akt and HIF-1α/VEGF pathways); and energy metabolism and the regulation of cellular ATP levels, the blood-brain barrier and other effects via N-methyl-D-aspartic acid (NMDA) receptors, ERS, and AMP/AMPK-GLUT pathways. Collectively, these mechanisms result in significant neuroprotective effects against cerebral ischemic injury. These findings will be valuable in that they should further promote the development of candidate drugs and provide more information to support the application of previous findings in stroke clinical trials.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 512 ◽  
Author(s):  
Xie ◽  
Zhu ◽  
Dong ◽  
Nan ◽  
Meng ◽  
...  

Ischemic stroke is a clinically common cerebrovascular disease whose main risks include necrosis, apoptosis and cerebral infarction, all caused by cerebral ischemia and reperfusion (I/R) injury. This process has particular significance for the treatment of stroke patients. Notoginseng leaf triterpenes (PNGL), as a valuable medicine, have been discovered to have neuroprotective effects. However, it was not confirmed that whether PNGL may possess neuroprotective effects against cerebral I/R injury. To explore the neuroprotective effects of PNGL and their underlying mechanisms, a middle cerebral artery occlusion/reperfusion (MCAO/R) model was established. In vivo results suggested that in MCAO/R model rats, PNGL pretreatment (73.0, 146, 292 mg/kg) remarkably decreased infarct volume, reduced brain water content, and improved neurological functions; moreover, PNGL (73.0, 146, 292 mg/kg) significantly alleviated blood-brain barrier (BBB) disruption and inhibited neuronal apoptosis and neuronal loss caused by cerebral I/R injury, while PNGL with a different concertation (146, 292 mg/kg) significantly reduced the concentrations of IL-6, TNF-α, IL-1 β, and HMGB1 in serums in a dose-dependent way, which indicated that inflammation inhibition could be involved in the neuroprotective effects of PNGL. The immunofluorescence and western blot analysis showed PNGL decreased HMGB1 expression, suppressed the HMGB1-triggered inflammation, and inhibited microglia activation (IBA1) in hippocampus and cortex, thus dose-dependently downregulating inflammatory cytokines including VCAM-1, MMP-9, MMP-2, and ICAM-1 concentrations in ischemic brains. Interestingly, PNGL administration (146 mg/kg) significantly downregulated the levels of p-P44/42, p-JNK1/2 and p-P38 MAPK, and also inhibited expressions of the total NF-κB and phosphorylated NF-κB in ischemic brains, which was the downstream pathway triggered by HMGB1. All of these results indicated that the protective effects of PNGL against cerebral I/R injury could be associated with inhibiting HMGB1-triggered inflammation, suppressing the activation of MAPKs and NF-κB, and thus improved cerebral I/R-induced neuropathological changes. This study may offer insight into discovering new active compounds for the treatment of ischemic stroke.


Author(s):  
María Yolanda Cruz Martínez ◽  
Melanie Tessa Saavedra Navarrete ◽  
José Juan Antonio Ibarra Arias

Stroke is a pathology of great relevance worldwide as it currently occupies the second motif of death and the third reason of disability. Although exits some therapies that are used successfully in the clinic, a very high percentage of patients do not have the opportunity to benefit from them; therefore, it is imperative to propose other alternatives that may favor more patients. In this chapter, we briefly review the inflammatory response induced by stroke and also its deleterious and protective effects. We will describe the characteristics of copolymer-1 and the effects that this compound has shown in models of cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document