scholarly journals Numerical Modeling and Experimental Characterization of Elastomeric Pads Bonded in a Conical Spring under Multiaxial Loads and Pre-Compression

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Debora Francisco Lalo ◽  
Marcelo Greco ◽  
Matias Meroniuc

Elastomeric components are widely used in the engineering field since their mechanical properties can vary according to a specific condition, enabling their applications under large deformations and multiaxial loading. In this context, the present study seeks to investigate the main challenges involved in the finite element hyperelasticity simulation of rubber-like material components under different cases of multiaxial loading and precompression. The complex geometry of a conical rubber spring was chosen to deal with several deformation modes; this component is in the suspension system placed between the frame and the axle for railway vehicles. The framework of this study provides the correlation between axial and radial stiffness under precompression obtained by experimental tests in prototypes and virtual modeling obtained through a curve fitting procedure. Since the material approaches incompressibility, different shape functions were adopted to describe the fields of pressure and displacements according to the finite element hybrid formulation. The material parameters were accurately adjusted through an optimization algorithm implemented in Python program language which calibrates the finite element model according to the prototype test data. However, as an initial guess, the proper constitutive model and its parameters were first defined based only on the uniaxial tensile test data, since this test is easy to perform and well understood. The validation of the simulation results in comparison with the experimental data demonstrated that care should be given when the same component is subjected to different multiaxial loading cases.

2010 ◽  
Vol 02 (03n04) ◽  
pp. 235-255 ◽  
Author(s):  
MAKOTO UCHIDA ◽  
NAOYA TADA

The two-scale elasto-viscoplastic deformation behavior of amorphous polymer was investigated using the large deformation finite element homogenization method. In order to enable a large time increment for the simulation step in the plastic deformation stage, the tangent modulus method is introduced into the nonaffine molecular chain network theory, which is used to represent the deformation behavior of pure amorphous polymer. Two kinds of heterogeneous microstructures were prepared in this investigation. One was the void model, which contains uniformly or randomly distributed voids, and the other was the heterogeneous strength (HS) model, which contains a distribution of initial shear strength. In the macroscopic scale, initiation and propagation processes of necking during uniaxial tension were considered. The macroscopic nominal stress–strain relation was strongly characterized by the volume fraction and distribution of voids for the void model and by the width of the strength distribution for the HS model. Non-uniform deformation behaviors in microscopic and macroscopic scales are closely related to each other for amorphous polymers because continuous stretching and hardening in the localized zone of the microstructure brings about an increase in macroscopic deformation resistance. Furthermore, computational results obtained from the homogenization model are compared to those obtained from the full-scale finite element model, and the effect of the scale difference between microscopic and macroscopic fields is discussed.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7665
Author(s):  
Marcin Daniel Gajewski ◽  
Mikołaj Miecznikowski

The paper presents modeling of bridge elastomeric bearings using large deformation theory and hyperelastic constitutive relations. In this work, the simplest neo-Hookean model was compared with the Yeoh model. The parameters of the models were determined from the elastomer uniaxial tensile test and then verified with the results from experimental bearing compression tests. For verification, bearing compression tests were modeled and executed using the finite element method (FEM) in ABAQUS software. Additionally, the parameters of the constitutive models were determined using the inverse analysis method, for which the simulation results were as close as possible to those recorded during the experimental tests. The overall assessment of the suitability of elastomer bearings modeling with neo-Hookean and Yeoh hyperelasticity models is presented in detail.


2014 ◽  
Vol 644-650 ◽  
pp. 670-673
Author(s):  
Guo You Han ◽  
Ming Qi Wang ◽  
Yu Hou ◽  
Qiang Li

The finite element analysis of PCP involves three nonlinear of geometry, material and contact, and the load of PCP is diversity, leading to it difficult to establish the finite element model and calculate by finite method. This article takes GLB120-27 as an example, to establish 3D solid model of PCP by using SolidWorks; to determine M-R model constant of stator rubber by using the data of uniaxial tensile test: to separate the seal band from the stator chamber by using Boolean operation and set up contact pairs, to achieve the correct simulation of stator chamber fluid pressure; to correctly simulate the interference fit between stator and rotor through setting correlation parameters; to establish 3D finite element analysis model and verify the correctness by using the experiment data of hydraulic characteristics of PCP.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4585
Author(s):  
Tiago Forti ◽  
Gustavo Batistela ◽  
Nadia Forti ◽  
Nicolas Vianna

Concrete exhibits a complex mechanical behavior, especially when approaching failure. Its behavior is governed by the interaction of the heterogeneous structures of the material at the first level of observation below the homogeneous continuum, i.e., at the mesoscale. Concrete is assumed to be a three-phase composite of coarse aggregates, mortar, and the interfacial transitional zone (ITZ) between them. Finite element modeling on a mesoscale requires appropriate meshes that discretize the three concrete components. As the weakest link in concrete, ITZ plays an important role. However, meshing ITZ is a challenging issue, due to its very reduced thickness. Representing ITZ with solid elements of such reduced size would produce very expensive finite element meshes. An alternative is to represent ITZ as zero-thickness interface elements. This work adopts interface elements for ITZ. Damage plasticity model is adopted to describe the softening behavior of mortar in compression, while cohesive fractures describe the cracking process. Numerical experiments are presented. First example deals with the estimation of concrete Young’s modulus. Experimental tests were performed to support the numerical test. A second experiment simulates a uniaxial compression test and last experiment simulates a uniaxial tensile test, where results are compared to data from the literature.


Author(s):  
Yi Pan ◽  
Vivak Patel ◽  
Assimina A. Pelegri ◽  
David I. Shreiber

Axonal injury represents a critical target for traumatic brain and spinal cord injuries prevention and treatment. Finite element head models are often used to predict brain injury caused by mechanical loading exerted on the head. Many studies have been attempted to understand injury mechanisms and to define mechanical parameters of axonal injury. Mechanical strain has been identified as the proximal cause of axonal injury. Since the microstructure of the brain white matter is locally oriented, the stress and strain fields are highly axon orientation dependent. The accuracy of the finite element simulations depends not only on correct determination of the material properties but also on precise depiction of the tissues’ microstructure (microscopic level). We applied a finite element method and a mircomechanics approach to simulate the kinematics of axon, which was developed according to experimental data, and found that the degree of coupling between the axons and surrounding cells within the tissue will affect the behavior of the tissue. In this study, the finite element model and the kinematic axonal model are applied to the Representative Volume Element (RVE) of central nervous system (CNS) white matter to investigate the tissue level mechanical behavior. The uniaxial tensile test on the white matter tissue will be presented as an example using the RVE.


Author(s):  
Chen Xin ◽  
Qin Ye ◽  
Yuan Xiguang ◽  
Zhang Ping ◽  
Sun Jian

Abstract According to the real situation, a new method of updating the finite element model (FEM) of a combined structure step by step is proposed in this paper. It is assumed that there are two types of error when establishing the FEMs. One of them results from the simplifications, in fact, it is severe for complicated structures, which usually assume many simplifications; the other is from the process of identifying structural joint parameters. For this reason, it is recommended that the FEM should be established in two stages. At the first stage, the local physical parameters relating with the simplifications are corrected by using the dynamic test data of the corresponding substructures. Then, the structural joint parameters that link the substructures are corrected by the dynamic test data of the combined structure as a whole. The updating formula is presented and proved, and its algorithm is also described. And the experimental results show that the efficiency and accuracy of the proposed method are quite satisfactory.


2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.


2015 ◽  
Vol 1 (1) ◽  
pp. 507-509
Author(s):  
H. Martin ◽  
N. Gutteck ◽  
J.-B. Matthies ◽  
T. Hanke ◽  
G. Gradl ◽  
...  

AbstractIn order to demonstrate the influence of the boundary conditions in experimental biomechanical investigations of arthrodesis implants two different models were investigated. As basic model, a simplified finite element model of the cortical bone was used in order to compare the stress values with (Model 1) and without (Model 2) allowing horizontal displacements of the load application point. The model without constraints of horizontal displacements showed considerably higher stress values at the point of failure. Moreover, this investigation shows that the boundary conditions (e.g. constraints) have to be carefully considered, since simplifications of the reality with experimental tests cannot always be avoided.


2019 ◽  
Vol 276 ◽  
pp. 01013
Author(s):  
Ahmad Basshofi Habieb ◽  
Tavio Tavio ◽  
Gabriele Milani ◽  
Usman Wijaya

Lead Rubber Bearing (LRB) has been widely applied for seismic protection of mid and high-rise buildings around the world. Its excellent energy dissipation becomes the most important aspect of this isolation system thanks to the plasticity and recovery behavior of the lead core. Aiming to develop a deeper knowledge on the behavior of LRB’s, a 3D detailed finite element (FE) modeling is performed in Abaqus FE software. Some important parameters involved in the model are plasticity of the lead core and hyper-elasticity and viscosity of the rubber material. The parameters for rubber material are derived from the results of experimental works in the laboratory, including uniaxial tensile test and relaxation test. The bearing model is then subjected to a cyclic shear-test under constant vertical load. The result of the 3D-FE model is then compared with the analytic-Abaqus model for LRB isolators, developed in the literature. Finally, both 3D-FE model and analytic model result in a good agreement on the shear behaviour of the presented LRB.


Sign in / Sign up

Export Citation Format

Share Document